
Qunfeng Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cassava genome from a wild ancestor to cultivated varieties. Nature Communications, 2014, 5, 5110.	12.8	230
2	An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics, 2014, 15, 1158.	2.8	127
3	Transcriptome Comparison of Global Distinctive Features Between Pollination and Parthenocarpic Fruit Set Reveals Transcriptional Phytohormone Cross-Talk in Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 2014, 55, 1325-1342.	3.1	54
4	Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theoretical and Applied Genetics, 2018, 131, 2229-2243.	3.6	54
5	Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC Plant Biology, 2016, 16, 182.	3.6	45
6	Singleâ€copy geneâ€based chromosome painting in cucumber and its application for chromosome rearrangement analysis in <i><scp>C</scp>ucumis</i> . Plant Journal, 2014, 78, 169-179.	5.7	41
7	Inheritance and mapping of the ore gene controlling the quantity of \hat{I}^2 -carotene in cucumber (Cucumis) Tj ETQq1	1.0,78431 2.1	14 rgBT /Ove
8	Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in <i>Cucumis</i> . Plant Journal, 2020, 102, 178-186.	5.7	40
9	Fine Mapping of CsVYL, Conferring Virescent Leaf Through the Regulation of Chloroplast Development in Cucumber. Frontiers in Plant Science, 2018, 9, 432.	3.6	38
10	Ty1 <i>-copia</i> retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome, 2007, 50, 802-810.	2.0	36
11	Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. BMC Genomics, 2015, 16, 730.	2.8	36
12	Integration of High-Resolution Physical and Genetic Map Reveals Differential Recombination Frequency between Chromosomes and the Genome Assembling Quality in Cucumber. PLoS ONE, 2013, 8, e62676.	2.5	26
13	Whole enome Sequence of Synthesized Allopolyploids in <i>Cucumis</i> Reveals Insights into the Genome Evolution of Allopolyploidization. Advanced Science, 2021, 8, 2004222.	11.2	24
14	Comparative transcriptomics reveals suppressed expression of genes related to auxin and the cell cycle contributes to the resistance of cucumber against Meloidogyne incognita. BMC Genomics, 2018, 19, 583.	2.8	23
15	Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus <i>Cucumis</i> . Plant Journal, 2021, 107, 1243-1259.	5.7	23
16	Genome-Wide Identification and Expression Analysis of Heat Shock Protein 70 (HSP70) Gene Family in Pumpkin (Cucurbita moschata) Rootstock under Drought Stress Suggested the Potential Role of these Chaperones in Stress Tolerance. International Journal of Molecular Sciences, 2022, 23, 1918.	4.1	22
17	Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L Chromosome Research, 2020, 28, 171-182.	2.2	21
18	Chromosome-scale genome assembly of <i>Cucumis hystrix</i> —a wild species interspecifically cross-compatible with cultivated cucumber. Horticulture Research, 2021, 8, 40.	6.3	18

#	Article	IF	CITATIONS
19	A leaf shape mutant provides insight into PINOID Serine/Threonine Kinase function in cucumber () Tj ETQq1 1 0.78	84314 rgB	T ₁ /Overlock
20	Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis ×hytivus with dysploid parental karyotypes. BMC Plant Biology, 2019, 19, 471.	3.6	15
21	Long-distance control of the scion by the rootstock under drought stress as revealed by transcriptome sequencing and mobile mRNA identification. Horticulture Research, 2022, 9, .	6.3	15
22	Identification of all homoeologous chromosomes of newly synthetic allotetraploid Cucumis × hytivus and its wild parent reveals stable subgenome structure. Chromosoma, 2017, 126, 713-728.	2.2	14
23	An irregularly striped rind mutant reveals new insight into the function of PG1Î ² in cucumber (Cucumis) Tj ETQq1	1,0,78431 3.6	4_rgBT /Ove
24	Identification and Expression Analysis of D-type Cyclin Genes in Early Developing Fruit of Cucumber (Cucumis sativus L.). Plant Molecular Biology Reporter, 2014, 32, 209-218.	1.8	13
25	Allopolyploidization in <i>Cucumis</i> contributes to delayed leaf maturation with repression of redundant homoeologous genes. Plant Journal, 2018, 94, 393-404.	5.7	13
26	Candidate genes underlying the quantitative trait loci for root-knot nematode resistance in a Cucumis hystrix introgression line of cucumber based on population sequencing. Journal of Plant Research, 2019, 132, 813-823.	2.4	13
27	Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiologiae Plantarum, 2014, 36, 139-149.	2.1	11
28	Genome-wide analysis of a putative lipid transfer protein LTP_2 gene family reveals CsLTP_2 genes involved in response of cucumber against root-knot nematode (Meloidogyne incognita). Genome, 2020, 63, 225-238.	2.0	11
29	Organization and evolution of four differentially amplified tandem repeats in the Cucumis hystrix genome. Planta, 2017, 246, 749-761.	3.2	9
30	Fine Mapping and Transcriptome Analysis of Virescent Leaf Gene v-2 in Cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2020, 11, 570817.	3.6	9
31	Identification and Expression Analysis of the CsMYB Gene Family in Root Knot Nematode-Resistant and Susceptible Cucumbers. Frontiers in Genetics, 2020, 11, 550677.	2.3	9
32	Identification of a putative candidate gene encoding 7-dehydrocholesterol reductase involved in brassinosteroids biosynthesis for compact plant architecture in Cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2021, 134, 2023-2034.	3.6	9
33	Genome-Wide Identification of the B-Box Gene Family and Expression Analysis Suggests Their Potential Role in Photoperiod-Mediated β-Carotene Accumulation in the Endocarp of Cucumber (Cucumis sativus) Tj ETQq.	1 2.0 .7843	i≸ rgBT /©∖
34	Chromosome identification in <i>Cucumis anguria</i> revealed by cross-species single-copy gene FISH. Genome, 2018, 61, 397-404.	2.0	7
35	Global Profiling of IncRNAs Expression Responsive to Allopolyploidization in Cucumis. Genes, 2020, 11, 1500.	2.4	7
36	Multi-omics analysis revealed that MAPK signaling and flavonoid metabolic pathway contributed to resistance against Meloidogyne incognita in the introgression line cucumber. Journal of Proteomics, 2020, 220, 103675.	2.4	7

QUNFENG LOU

#	Article	IF	CITATIONS
37	Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in <i>Cucumis</i> . Genome, 2021, 64, 627-638.	2.0	6
38	Genetic mapping of angular leaf spot resistance to Pseudomonas syringae pv. lachrymans in a Cucumis hystrix introgression line of cucumber. Euphytica, 2019, 215, 1.	1.2	5
39	The mutation of C-24 reductase, a key enzyme involved in brassinolide biosynthesis, confers a novel compact plant architecture phenotype to cucumber. Theoretical and Applied Genetics, 2022, 135, 2711-2723.	3.6	5
40	The complete chloroplast genome sequence of the wild cucumber <i>Cucumis hystrix</i> Chakr. (<i>Cucumis</i> , cucurbitaceae). Mitochondrial DNA, 2016, 27, 142-144.	0.6	4
41	Molecular and cytogenetic analyses provide evidence of the introgression of chromosomal segments from the wild Cucumis hystrix into the cultivated cucumber through the bridge of a synthetic allotetraploid. Molecular Breeding, 2017, 37, 1.	2.1	4
42	A SNP Mutation in Homeodomain-DDT (HD-DDT) Transcription Factor Results in Multiple Trichomes (mt) in Cucumber (Cucumis sativus L.). Genes, 2021, 12, 1478.	2.4	2
43	Development of alien addition lines from Cucumis hystrix in Cucumis sativus: cytological and molecular marker analyses. Genome, 2020, 63, 629-641.	2.0	1

44 Molecular Research Progress on Xishuangbanna Cucumber (Cucumis sativus L. var. Xishuangbannesis) Tj ETQq0 0 0 grgBT /Overlock 10 T

45	Rapid and visual monitoring of alien sequences using crop wild relatives specific oligo-painting: The case of cucumber chromosome engineering. Plant Science, 2022, 319, 111199.	3.6	1	
----	--	-----	---	--