
Taishi Umezawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976395/publications.pdf Version: 2024-02-01

TAISHI LIMEZANNA

#	Article	IF	CITATIONS
1	Phosphoproteomic Approaches to Evaluate. Methods in Molecular Biology, 2022, 2462, 163-179.	0.9	Ο
2	Growth Promotion or Osmotic Stress Response: How SNF1-Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants. Plants, 2021, 10, 1443.	3.5	16
3	<i>Arabidopsis</i> group C Raf-like protein kinases negatively regulate abscisic acid signaling and are direct substrates of SnRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
4	ldentification of novel compounds that inhibit SnRK2 kinase activity by high-throughput screening. Biochemical and Biophysical Research Communications, 2021, 537, 57-63.	2.1	6
5	Activation of SnRK2 by Raf-like kinase ARK represents a primary mechanism of ABA and abiotic stress responses. Plant Physiology, 2021, 185, 533-546.	4.8	14
6	Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. International Journal of Molecular Sciences, 2020, 21, 8631.	4.1	19
7	Arabidopsis Rafâ€like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. Plant Journal, 2020, 103, 634-644.	5.7	71
8	Comparative Phosphoproteomic Analysis Reveals a Decay of ABA Signaling in Barley Embryos during After-Ripening. Plant and Cell Physiology, 2019, 60, 2758-2768.	3.1	14
9	A role for <i>PM19-Like 1</i> in seed dormancy in Arabidopsis. Seed Science Research, 2019, 29, 184-196.	1.7	9
10	SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Communications Biology, 2019, 2, 30.	4.4	76
11	Comparative Phosphoproteomic Analysis of Barley Embryos with Different Dormancy during Imbibition. International Journal of Molecular Sciences, 2019, 20, 451.	4.1	11
12	Archetypal Roles of an Abscisic Acid Receptor in Drought and Sugar Responses in Liverworts. Plant Physiology, 2019, 179, 317-328.	4.8	46
13	Expression analysis of cellulose synthases that comprise the Type II complex in hybrid aspen. Plant Biology, 2019, 21, 361-370.	3.8	1
14	Phosphoproteomic profiling reveals <scp>ABA</scp> â€responsive phosphosignaling pathways in <i>Physcomitrella patens</i> . Plant Journal, 2018, 94, 699-708.	5.7	48
15	Enhancement of abiotic stress tolerance in poplar by overexpression of key Arabidopsis stress response genes, AtSRK2C and AtGolS2. Molecular Breeding, 2017, 37, 1.	2.1	14
16	Novel Abscisic Acid Antagonists Identified with Chemical Array Screening. ChemBioChem, 2015, 16, 2471-2478.	2.6	14
17	Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6388-96.	7.1	137
18	Screening of Kinase Substrates Using Kinase Knockout Mutants. Methods in Molecular Biology, 2015, 1306. 59-69.	0.9	1

ARTICLE IF CITATIONS Phosphorylation Networks in the Abscisic Acid Signaling Pathway. The Enzymes, 2014, 35, 27-56. Drought Stress Signaling Network., 2014, , 383-409. 20 23 Stress Signaling Networks: Drought Stress., 2013, , 1-23. Osmotic Stress Responses and Plant Growth Controlled by Potassium Transporters 22 6.6 350 in<i>Arabidopsis</i>ÂÂ. Plant Cell, 2013, 25, 609-624. Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid 3.6 355 Signaling Pathway in <i>Arabidopsis thaliana</i>. Science Signaling, 2013, 6, rs8. 24 Protein Phosphorylation Network in Abscisic Acid Signaling., 2013, , 155-164. 1 The Regulatory Networks of Plant Responses to Abscisic Acid. Advances in Botanical Research, 2011, , 1.1 201-248. Systems biology approaches to abscisic acid signaling. Journal of Plant Research, 2011, 124, 539-548. 26 2.4 22 The PP2Câ€"SnRK2 complex. Plant Signaling and Behavior, 2010, 5, 160-163. 2.4 Identification of QTLs controlling somatic embryogenesis using RI population of cultivarÂ×Âweedy 28 1.5 9 soybean. Plant Biotechnology Reports, 2010, 4, 23-27. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183. 27.8 3,854 Two Closely Related Subclass II SnRK2 Protein Kinases Cooperatively Regulate Drought-Inducible Gene 30 3.1 123 Expression. Plant and Cell Physiology, 2010, 51, 842-847. Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport. 3.1 800 Plant and Cell Physiology, 2010, 51, 1821-1839. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 2009, 424, 32 3.7 316 439-448. Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and 3.1 Cell Physiology, 2009, 50, 1345-1363. Phosphorylation Of KAT1 C-terminus Modulates K+ Uptake Activity. Biophysical Journal, 2009, 96, 171a. 34 0.5 1 Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to 3.1 599 Water Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2123-2132. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. 36 Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7.1 980 17588-17593.

TAISHI UMEZAWA

Taishi Umezawa

#	Article	IF	CITATIONS
37	Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid–Mediated Abiotic Stress Response in <i>Arabidopsis</i> Á. Plant Cell, 2008, 20, 1678-1692.	6.6	465
38	<i>Arabidopsis</i> DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression. Plant Cell, 2008, 20, 1693-1707.	6.6	477
39	Sequencing and Analysis of Approximately 40 000 Soybean cDNA Clones from a Full-Length-Enriched cDNA Library. DNA Research, 2008, 15, 333-346.	3.4	98
40	A Heterocomplex of Iron Superoxide Dismutases Defends Chloroplast Nucleoids against Oxidative Stress and Is Essential for Chloroplast Development in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 3148-3162.	6.6	270
41	Transcriptome Analysis of Plant Drought and Salt Stress Response. , 2007, , 261-283.		8
42	Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 2007, 10, 296-302.	7.1	761
43	Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Letters, 2006, 580, 5947-5952.	2.8	24
44	CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response inArabidopsis thaliana. Plant Journal, 2006, 46, 171-182.	5.7	294
45	Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 2006, 17, 113-122.	6.6	683
46	Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1988-1993.	7.1	760
47	The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid (ABA) and Osmotic Stress Signals Controlling Stomatal Closure in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 5310-5318.	3.4	481
48	Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 4491-4498.	3.0	94
49	Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3 -1. Plant, Cell and Environment, 2005, 28, 1267-1275.	5.7	40
50	SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17306-17311.	7.1	312
51	Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 2004, 55, 327-342.	3.9	225
52	Construction of a High-density AFLP and SSR Map Using Recombinant Inbred Lines of Cultivated * Weedy Soybean. Breeding Science, 2003, 53, 335-344.	1.9	4
53	Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2002, 2, 282-291.	3.5	394
54	Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant, Cell and Environment, 2002, 25, 1617-1625.	5.7	42

2

#	Article	IF	CITATIONS
55	Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiologia Plantarum, 2000, 110, 59-63.	5.2	82

56 Genomic Analysis of Stress Respnse. , 0, , 248-265.