
Taishi Umezawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183.	27.8	3,854
2	Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17588-17593.	7.1	980
3	Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport. Plant and Cell Physiology, 2010, 51, 1821-1839.	3.1	800
4	Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 2007, 10, 296-302.	7.1	761
5	Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1988-1993.	7.1	760
6	Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 2006, 17, 113-122.	6.6	683
7	Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 2009, 50, 1345-1363.	3.1	636
8	Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2123-2132.	3.1	599
9	The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid (ABA) and Osmotic Stress Signals Controlling Stomatal Closure in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 5310-5318.	3.4	481
10	<i>Arabidopsis</i> DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression. Plant Cell, 2008, 20, 1693-1707.	6.6	477
11	Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid–Mediated Abiotic Stress Response in <i>Arabidopsis</i> Å. Plant Cell, 2008, 20, 1678-1692.	6.6	465
12	Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2002, 2, 282-291.	3.5	394
13	Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in <i>Arabidopsis thaliana</i> . Science Signaling, 2013, 6, rs8.	3.6	355
14	Osmotic Stress Responses and Plant Growth Controlled by Potassium Transporters in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 609-624.	6.6	350
15	Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 2009, 424, 439-448.	3.7	316
16	SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17306-17311.	7.1	312
17	CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response inArabidopsis thaliana. Plant Journal, 2006, 46, 171-182.	5.7	294
18	A Heterocomplex of Iron Superoxide Dismutases Defends Chloroplast Nucleoids against Oxidative Stress and Is Essential for Chloroplast Development in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 3148-3162.	6.6	270

TAISHI UMEZAWA

#	Article	IF	CITATIONS
19	Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 2004, 55, 327-342.	3.9	225
20	Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6388-96.	7.1	137
21	Two Closely Related Subclass II SnRK2 Protein Kinases Cooperatively Regulate Drought-Inducible Gene Expression. Plant and Cell Physiology, 2010, 51, 842-847.	3.1	123
22	Sequencing and Analysis of Approximately 40 000 Soybean cDNA Clones from a Full-Length-Enriched cDNA Library. DNA Research, 2008, 15, 333-346.	3.4	98
23	Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 4491-4498.	3.0	94
24	Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiologia Plantarum, 2000, 110, 59-63.	5.2	82
25	SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Communications Biology, 2019, 2, 30.	4.4	76
26	Arabidopsis Rafâ€like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. Plant Journal, 2020, 103, 634-644.	5.7	71
27	Phosphoproteomic profiling reveals <scp>ABA</scp> â€responsive phosphosignaling pathways in <i>Physcomitrella patens</i> . Plant Journal, 2018, 94, 699-708.	5.7	48
28	Archetypal Roles of an Abscisic Acid Receptor in Drought and Sugar Responses in Liverworts. Plant Physiology, 2019, 179, 317-328.	4.8	46
29	Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant, Cell and Environment, 2002, 25, 1617-1625.	5.7	42
30	The PP2C–SnRK2 complex. Plant Signaling and Behavior, 2010, 5, 160-163.	2.4	42
31	Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3 -1. Plant, Cell and Environment, 2005, 28, 1267-1275.	5.7	40
32	<i>Arabidopsis</i> group C Raf-like protein kinases negatively regulate abscisic acid signaling and are direct substrates of SnRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
33	Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Letters, 2006, 580, 5947-5952.	2.8	24
34	Drought Stress Signaling Network. , 2014, , 383-409.		23
35	Systems biology approaches to abscisic acid signaling. Journal of Plant Research, 2011, 124, 539-548.	2.4	22
36	Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. International Journal of Molecular Sciences, 2020, 21, 8631.	4.1	19

Taishi Umezawa

#	Article	IF	CITATIONS
37	Growth Promotion or Osmotic Stress Response: How SNF1-Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants. Plants, 2021, 10, 1443.	3.5	16
38	Novel Abscisic Acid Antagonists Identified with Chemical Array Screening. ChemBioChem, 2015, 16, 2471-2478.	2.6	14
39	Enhancement of abiotic stress tolerance in poplar by overexpression of key Arabidopsis stress response genes, AtSRK2C and AtGolS2. Molecular Breeding, 2017, 37, 1.	2.1	14
40	Comparative Phosphoproteomic Analysis Reveals a Decay of ABA Signaling in Barley Embryos during After-Ripening. Plant and Cell Physiology, 2019, 60, 2758-2768.	3.1	14
41	Activation of SnRK2 by Raf-like kinase ARK represents a primary mechanism of ABA and abiotic stress responses. Plant Physiology, 2021, 185, 533-546.	4.8	14
42	Phosphorylation Networks in the Abscisic Acid Signaling Pathway. The Enzymes, 2014, 35, 27-56.	1.7	12
43	Comparative Phosphoproteomic Analysis of Barley Embryos with Different Dormancy during Imbibition. International Journal of Molecular Sciences, 2019, 20, 451.	4.1	11
44	A role for <i>PM19-Like 1</i> in seed dormancy in Arabidopsis. Seed Science Research, 2019, 29, 184-196.	1.7	9
45	Transcriptome Analysis of Plant Drought and Salt Stress Response. , 2007, , 261-283.		8
46	The Regulatory Networks of Plant Responses to Abscisic Acid. Advances in Botanical Research, 2011, , 201-248.	1.1	6
47	Identification of novel compounds that inhibit SnRK2 kinase activity by high-throughput screening. Biochemical and Biophysical Research Communications, 2021, 537, 57-63.	2.1	6
48	Construction of a High-density AFLP and SSR Map Using Recombinant Inbred Lines of Cultivated * Weedy Soybean. Breeding Science, 2003, 53, 335-344.	1.9	4
49	Stress Signaling Networks: Drought Stress. , 2013, , 1-23.		3
50	Genomic Analysis of Stress Respnse. , 0, , 248-265.		2
51	Identification of QTLs controlling somatic embryogenesis using RI population of cultivarÂ×Âweedy soybean. Plant Biotechnology Reports, 2010, 4, 23-27.	1.5	2
52	Phosphorylation Of KAT1 C-terminus Modulates K+ Uptake Activity. Biophysical Journal, 2009, 96, 171a.	0.5	1
53	Screening of Kinase Substrates Using Kinase Knockout Mutants. Methods in Molecular Biology, 2015, 1306, 59-69.	0.9	1
54	Expression analysis of cellulose synthases that comprise the Type II complex in hybrid aspen. Plant Biology, 2019, 21, 361-370.	3.8	1

#	Article	IF	CITATIONS
55	Protein Phosphorylation Network in Abscisic Acid Signaling. , 2013, , 155-164.		1
56	Phosphoproteomic Approaches to Evaluate. Methods in Molecular Biology, 2022, 2462, 163-179.	0.9	0