
Harold Y Mcsween

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science, 2004, 306, 1709-1714.	12.6	845
2	What we have learned about Mars from SNC meteorites. Meteoritics, 1994, 29, 757-779.	1.4	579
3	The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode. Science, 1997, 278, 1771.1-1774.	12.6	536
4	Dawn at Vesta: Testing the Protoplanetary Paradigm. Science, 2012, 336, 684-686.	12.6	422
5	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	12.6	404
6	Elemental Composition of the Martian Crust. Science, 2009, 324, 736-739.	12.6	380
7	An integrated view of the chemistry and mineralogy of martian soils. Nature, 2005, 436, 49-54.	27.8	348
8	SNC meteorites: Clues to Martian petrologic evolution?. Reviews of Geophysics, 1985, 23, 391-416.	23.0	321
9	Petrology and origin of the shergottite meteorites. Geochimica Et Cosmochimica Acta, 1979, 43, 1475-1498.	3.9	281
10	Correlated alteration effects in CM carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 1996, 60, 2621-2633.	3.9	280
11	Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus, 1989, 82, 244-280.	2.5	276
12	Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 2015, 528, 241-244.	27.8	276
13	Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. Journal of Geophysical Research, 2000, 105, 1721-1755.	3.3	274
14	Are carbonaceous chondrites primitive or processed? A review. Reviews of Geophysics, 1979, 17, 1059-1078.	23.0	254
15	Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochimica Et Cosmochimica Acta, 1979, 43, 1761-1770.	3.9	251
16	Basaltic Rocks Analyzed by the Spirit Rover in Gusev Crater. Science, 2004, 305, 842-845.	12.6	244
17	Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature, 2005, 436, 66-69.	27.8	240
18	Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta. Science, 2012, 336, 697-700.	12.6	240

#	Article	IF	CITATIONS
19	Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 2016, 536, 54-57.	27.8	240
20	Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	238
21	Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature, 2002, 417, 263-266.	27.8	236
22	Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	234
23	Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	227
24	Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 1999, 104, 8679-8715.	3.3	226
25	Vesta's Shape and Morphology. Science, 2012, 336, 687-690.	12.6	222
26	Heliocentric Zoning of the Asteroid Belt by Aluminum-26 Heating. Science, 1993, 259, 653-655.	12.6	217
27	A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating. Icarus, 1998, 134, 187-206.	2.5	213
28	The Violent Collisional History of Asteroid 4 Vesta. Science, 2012, 336, 690-694.	12.6	209
29	Elemental Mapping by Dawn Reveals Exogenic H in Vesta's Regolith. Science, 2012, 338, 242-246.	12.6	201
30	The Geologically Recent Giant Impact Basins at Vesta's South Pole. Science, 2012, 336, 694-697.	12.6	194
31	HED Meteorites and Their Relationship to the Geology of Vesta and the Dawn Mission. Space Science Reviews, 2011, 163, 141-174.	8.1	192
32	Dawn; the Vesta– <scp>HED</scp> connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics and Planetary Science, 2013, 48, 2090-2104.	1.6	185
33	Petrogenesis of the Elephant Moraine A79001 meteorite: Multiple magma pulses on the shergottite parent body. Geochimica Et Cosmochimica Acta, 1983, 47, 1501-1513.	3.9	179
34	Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 2016, 353, 1008-1010.	12.6	178
35	Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 2005, 436, 504-509.	27.8	177
36	Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature, 2001, 409, 487-490.	27.8	176

#	Article	IF	CITATIONS
37	Pyroclastic Activity at Home Plate in Gusev Crater, Mars. Science, 2007, 316, 738-742.	12.6	174
38	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	12.6	169
39	Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover. Science, 2004, 305, 837-842.	12.6	168
40	Color and Albedo Heterogeneity of Vesta from Dawn. Science, 2012, 336, 700-704.	12.6	166
41	Dawn's Gamma Ray and Neutron Detector. Space Science Reviews, 2011, 163, 371-459.	8.1	160
42	Distribution of phyllosilicates on the surface of Ceres. Science, 2016, 353, .	12.6	159
43	Searching for the source regions of martian meteorites using MCS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars. Meteoritics and Planetary Science, 2003, 38, 871-885.	1.6	157
44	Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. Journal of Geophysical Research, 2005, 110, .	3.3	156
45	Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater. Science, 2004, 305, 800-806.	12.6	153
46	Fluid lava flows in Gusev crater, Mars. Journal of Geophysical Research, 2005, 110, .	3.3	153
47	Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 2012, 221, 544-559.	2.5	152
48	Localized aliphatic organic material on the surface of Ceres. Science, 2017, 355, 719-722.	12.6	152
49	Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 2012, 491, 83-86.	27.8	151
50	Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	149
51	Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. Journal of Geophysical Research, 2006, 111, .	3.3	148
52	Rocks of the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	146
53	Revised model calculations for the thermal histories of ordinary chondrite parent bodies. Meteoritics and Planetary Science, 1996, 31, 783-792.	1.6	138
54	Constraints on the composition and petrogenesis of the Martian crust. Journal of Geophysical Research, 2003, 108, .	3.3	138

#	Article	IF	CITATIONS
55	Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum. Science, 2004, 306, 1703-1709.	12.6	135
56	The rocks of Mars, from far and near. Meteoritics and Planetary Science, 2002, 37, 7-25.	1.6	131
57	Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager. Science, 2004, 305, 824-826.	12.6	130
58	Aqueous alteration in carbonaceous chondrites: Mass balance constraints on matrix mineralogy. Geochimica Et Cosmochimica Acta, 1987, 51, 2469-2477.	3.9	127
59	Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research, 2001, 106, 14733-14746.	3.3	126
60	Petrology on Mars. American Mineralogist, 2015, 100, 2380-2395.	1.9	126
61	Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 2001, 106, 14711-14732.	3.3	124
62	QUE94201 shergottite: Crystallization of a Martian basaltic magma. Geochimica Et Cosmochimica Acta, 1996, 60, 4563-4569.	3.9	123
63	The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry. Icarus, 1991, 90, 107-116.	2.5	120
64	Petrogenesis of shergottite meteorites inferred from minor and trace element microdistributions. Geochimica Et Cosmochimica Acta, 1994, 58, 4213-4229.	3.9	113
65	High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 2013, 6, 303-307.	12.9	113
66	Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteoritics and Planetary Science, 2006, 41, 581-606.	1.6	112
67	Mixing relationships in the Martian regolith and the composition of globally homogeneous dust. Geochimica Et Cosmochimica Acta, 2000, 64, 2155-2166.	3.9	111
68	Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research, 2004, 109, .	3.3	110
69	Martian meteorite Dhofar 019: A new shergottite. Meteoritics and Planetary Science, 2002, 37, 1107-1128.	1.6	108
70	Magnetite whiskers and platelets in the ALH84001 Martian meteorite: Evidence of vapor phase growth. Geochimica Et Cosmochimica Acta, 1996, 60, 5149-5155.	3.9	105
71	Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics and Planetary Science, 2010, 45, 850-872.	1.6	101
72	Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 2008, 113, .	3.3	99

#	Article	IF	CITATIONS
73	Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: Implications for possible Martian meteorite source regions. Journal of Geophysical Research, 2006, 111,	3.3	98
74	Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle Xâ€Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. Journal of Geophysical Research, 2008, 113, .	3.3	96
75	The Tissint Martian meteorite as evidence for the largest impact excavation. Nature Communications, 2013, 4, 1404.	12.8	96
76	Shock features in ironâ€nickel metal and troilite of Lâ€group ordinary chondrites. Meteoritics and Planetary Science, 1996, 31, 255-264.	1.6	95
77	Nature and degree of aqueous alteration in <scp>CM</scp> and <scp>CI</scp> carbonaceous chondrites. Meteoritics and Planetary Science, 2013, 48, 1618-1637.	1.6	94
78	Oxidation during metamorphism of the ordinary chondrites. Geochimica Et Cosmochimica Acta, 1993, 57, 1105-1114.	3.9	93
79	A coordinated spectral, mineralogical, and compositional study of ordinary chondrites. Icarus, 2010, 208, 789-797.	2.5	91
80	Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. Journal of Geophysical Research E: Planets, 2013, 118, 1858-1872.	3.6	87
81	Surface and craterâ€exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products. Journal of Geophysical Research, 2008, 113, .	3.3	86
82	Petrogenesis of olivine-phyric shergottite Yamato 980459, revisited. Geochimica Et Cosmochimica Acta, 2008, 72, 1711-1730.	3.9	84
83	Composition of the Rheasilvia basin, a window into Vesta's interior. Journal of Geophysical Research E: Planets, 2013, 118, 335-346.	3.6	84
84	Phase equilibria of the Shergotty meteorite: Constraints on preâ€eruptive water contents of martian magmas and fractional crystallization under hydrous conditions. Meteoritics and Planetary Science, 2001, 36, 793-806.	1.6	83
85	Allan Hills 77005: A New Meteorite Type Found in Antarctica. Science, 1979, 204, 1201-1203.	12.6	82
86	Petrogenetic relationship between Allan Hills 77005 and other achondrites. Earth and Planetary Science Letters, 1979, 45, 275-284.	4.4	82
87	Surficial Deposits at Gusev Crater Along Spirit Rover Traverses. Science, 2004, 305, 807-810.	12.6	82
88	Olivine in an unexpected location on Vesta's surface. Nature, 2013, 504, 122-125.	27.8	82
89	Outgassed Water on Mars: Constraints from Melt Inclusions in SNC Meteorites. Science, 1993, 259, 1890-1892.	12.6	80
90	Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy. Journal of Geophysical Research, 1997, 102, 25593-25603.	3.3	79

#	Article	IF	CITATIONS
91	Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics and Planetary Science, 2013, 48, 2185-2198.	1.6	75
92	Rare earth elements in minerals of the ALHA77005 shergottite and implications for its parent magma and crystallization history. Geochimica Et Cosmochimica Acta, 1990, 54, 2535-2547.	3.9	74
93	Insights into Ceres's evolution from surface composition. Meteoritics and Planetary Science, 2018, 53, 1820-1843.	1.6	73
94	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	1.6	73
95	A new type of chondritic meteorite found in lunar soil. Earth and Planetary Science Letters, 1976, 31, 193-199.	4.4	72
96	Sizes and Masses of Chondrules and Metal–Troilite Grains in Ordinary Chondrites: Possible Implications for Nebular Sorting. Icarus, 1999, 141, 96-106.	2.5	69
97	Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics and Planetary Science, 2010, 45, 123.	1.6	69
98	Global geologic context for rock types and surface alteration on Mars. Geology, 2004, 32, 645.	4.4	68
99	A petrologic and trace element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to basaltic and lherzolitic shergottites. Meteoritics and Planetary Science, 2001, 36, 195-208.	1.6	66
100	Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics and Planetary Science, 2013, 48, 2300-2315.	1.6	66
101	Nickel on Mars: Constraints on meteoritic material at the surface. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	65
102	Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics and Planetary Science, 2018, 53, 1793-1804.	1.6	65
103	Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry. Meteoritics and Planetary Science, 2005, 40, 745-754.	1.6	62
104	Pyroxene thermobarometry in LLâ€group chondrites and implications for parent body metamorphism. Meteoritics, 1989, 24, 219-226.	1.4	61
105	Determining the modal mineralogy of Martian soils. Journal of Geophysical Research, 2010, 115, .	3.3	60
106	Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols. Journal of Geophysical Research, 2005, 110, .	3.3	58
107	Dawn completes its mission at 4 Vesta. Meteoritics and Planetary Science, 2013, 48, 2076-2089.	1.6	54
108	Re-evaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite. Geochimica Et Cosmochimica Acta, 1999, 63, 1459-1470.	3.9	53

#	Article	IF	CITATIONS
109	THEMIS characterization of the MER Gusev crater landing site. Journal of Geophysical Research, 2003, 108, .	3.3	52
110	Water and the composition of Martian magmas. Geology, 2013, 41, 1115-1118.	4.4	52
111	Temperature dependence of specific heat capacity and its effect on asteroid thermal models. Meteoritics and Planetary Science, 1999, 34, 121-127.	1.6	51
112	CV and CM chondrite impact melts. Geochimica Et Cosmochimica Acta, 2016, 189, 338-358.	3.9	51
113	Sulfide isotopic compositions in shergottites and ALH84001, and possible implications for life on Mars. Geochimica Et Cosmochimica Acta, 1997, 61, 4449-4453.	3.9	50
114	Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example. Meteoritics and Planetary Science, 2003, 38, 711-724.	1.6	50
115	Petrology and trace element geochemistry of Robert Massif 04261 and 04262 meteorites, the first examples of geochemically enriched Iherzolitic shergottites. Geochimica Et Cosmochimica Acta, 2010, 74, 7283-7306.	3.9	50
116	Petrologic and textural diversity among the PCA 02 howardite group, one of the largest pieces of the Vestan surface. Meteoritics and Planetary Science, 2012, 47, 947-969.	1.6	50
117	Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering. Journal of Geophysical Research, 2012, 117, .	3.3	49
118	Cryogenic flow features on Ceres: Implications for craterâ€related cryovolcanism. Geophysical Research Letters, 2016, 43, 11,994.	4.0	48
119	Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment. Journal of Geophysical Research, 2011, 116, .	3.3	47
120	Neutron absorption constraints on the composition of 4 Vesta. Meteoritics and Planetary Science, 2013, 48, 2211-2236.	1.6	47
121	Petrology and trace element geochemistry of Tissint, the newest shergottite fall. Meteoritics and Planetary Science, 2015, 50, 63-85.	1.6	47
122	Basaltic Meteorites. Scientific American, 1980, 242, 54-63.	1.0	46
123	Melt inclusions in augite of the Nakhla martian meteorite: Evidence for basaltic parental melt. Meteoritics and Planetary Science, 2005, 40, 377-396.	1.6	45
124	Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	44
125	Modified sulfur isotopic compositions of sulfides in the nakhlites and Chassigny. Geochimica Et Cosmochimica Acta, 2000, 64, 1121-1131.	3.9	43
126	Crystallization of the basaltic shergottites: Insights from crystal size distribution (CSD) analysis of pyroxenes. Meteoritics and Planetary Science, 2000, 35, 919-927.	1.6	43

#	Article	IF	CITATIONS
127	MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin. Meteoritics and Planetary Science, 2011, 46, 1133-1151.	1.6	42
128	Compositional constraints on the genesis of diogenites. Meteoritics and Planetary Science, 2012, 47, 72-98.	1.6	42
129	Geomorphological evidence for transient water flow on Vesta. Earth and Planetary Science Letters, 2015, 411, 151-163.	4.4	42
130	Tharsis-sourced relatively dust-free lavas and their possible relationship to Martian meteorites. Journal of Volcanology and Geothermal Research, 2009, 185, 103-115.	2.1	40
131	Petrogenesis of a vitrophyre in the martian meteorite breccia NWA 7034. Geochimica Et Cosmochimica Acta, 2014, 141, 281-293.	3.9	40
132	Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting martian soils. Earth and Planetary Science Letters, 2015, 423, 67-77.	4.4	40
133	Petrogenesis of highâ€phosphorous Wishstone Class rocks in Gusev Crater, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	39
134	Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus, 2015, 257, 185-193.	2.5	39
135	A critical evaluation of oxidation <i>versus</i> reduction during metamorphism of L and LL group chondrites, and implications for asteroid spectroscopy. Meteoritics and Planetary Science, 2002, 37, 75-89.	1.6	38
136	Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Chemie Der Erde, 2019, 79, 125526.	2.0	36
137	Magmatic history and parental melt composition of olivineâ€phyric shergottite LAR 06319: Importance of magmatic degassing and olivine antecrysts in Martian magmatism. Meteoritics and Planetary Science, 2013, 48, 1359-1382.	1.6	35
138	Bounce Rock—A shergottiteâ€like basalt encountered at Meridiani Planum, Mars. Meteoritics and Planetary Science, 2011, 46, 1-20.	1.6	32
139	A comparison of sulfur isotope ratio measurement using two ion microprobe techniques and application to analysis of troilite in ordinary chondrites. Geochimica Et Cosmochimica Acta, 1997, 61, 601-609.	3.9	31
140	Application of the MELTS algorithm to Martian compositions and implications for magma crystallization. Journal of Geophysical Research E: Planets, 2013, 118, 2502-2519.	3.6	31
141	Formation of Evolved Rocks at Gale Crater by Crystal Fractionation and Implications for Mars Crustal Composition. Journal of Geophysical Research E: Planets, 2018, 123, 1525-1540.	3.6	31
142	Cosmochemical implications of the physical processing of cometary nuclei. Geochimica Et Cosmochimica Acta, 1989, 53, 3263-3271.	3.9	29
143	Geochemistry of 4 Vesta based on HED meteorites: Prospective study for interpretation of gamma ray and neutron spectra for the Dawn mission. Meteoritics and Planetary Science, 2007, 42, 255-269.	1.6	29
144	Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared Spectrometer (<scp>VIR</scp>). Meteoritics and Planetary Science, 2018, 53, 1844-1865.	1.6	29

#	Article	IF	CITATIONS
145	Distribution and variation of plagioclase compositions on Mars. Journal of Geophysical Research, 2010, 115, .	3.3	28
146	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	12.6	27
147	Analysis of ordinary chondrites using powder X-ray diffraction: 2. Applications to ordinary chondrite parent-body processes. Meteoritics and Planetary Science, 2010, 45, 135.	1.6	26
148	Metamorphism in the Martian crust. Meteoritics and Planetary Science, 2015, 50, 590-603.	1.6	26
149	Using <scp>HED</scp> meteorites to interpret neutron and gammaâ€ray data from asteroidÂ4 Vesta. Meteoritics and Planetary Science, 2015, 50, 1311-1337.	1.6	24
150	Olivine and pyroxene from the mantle of asteroid 4 Vesta. Earth and Planetary Science Letters, 2015, 418, 126-135.	4.4	23
151	Ordinary (mesostasis) and notâ€soâ€ordinary (symplectites) lateâ€stage assemblages in howardites. Meteoritics and Planetary Science, 2012, 47, 1475-1490.	1.6	21
152	New constraints on the formation of shergottite Elephant Moraine 79001 lithology A. Geochimica Et Cosmochimica Acta, 2013, 108, 1-20.	3.9	21
153	Exploring fractionation models for Martian magmas. Journal of Geophysical Research E: Planets, 2014, 119, 1-18.	3.6	20
154	The water content and parental magma of the second chassignite <scp>NWA</scp> 2737: Clues from trapped melt inclusions in olivine. Meteoritics and Planetary Science, 2013, 48, 474-492.	1.6	18
155	Martian basalt (shergottite) Queen Alexandra Range 94201 and lunar basalt 15555: A tale of two pyroxenes. Meteoritics and Planetary Science, 1998, 33, 321-328.	1.6	17
156	Plagioclase compositions derived from thermal emission spectra of compositionally complex mixtures: Implications for Martian feldspar mineralogy. Journal of Geophysical Research, 2007, 112, .	3.3	17
157	Crystallization kinetics of olivineâ€phyric shergottites. Meteoritics and Planetary Science, 2014, 49, 1440-1455.	1.6	16
158	Dacite formation on Vesta: Partial melting of the eucritic crust. Meteoritics and Planetary Science, 2017, 52, 1173-1196.	1.6	16
159	Spectral properties and mineral compositions of acapulcoite–lodranite clan meteorites: Establishing Sâ€ŧype asteroid–meteorite connections. Meteoritics and Planetary Science, 2019, 54, 157-180.	1.6	16
160	Analysis of surface compositions in the Oxia Palus region on Mars from Mars Global Surveyor Thermal Emission Spectrometer Observations. Journal of Geophysical Research, 2003, 108, .	3.3	15
161	Petrology and geochemistry of Yamato 984028: a cumulate lherzolitic shergottite with affinities to Y 000027, Y 000047, and Y 000097. Polar Science, 2011, 4, 497-514.	1.2	15
162	Evidence for early fragmentation-reassembly of ordinary chondrite (H, L, and LL) parent bodies from REE-in-two-pyroxene thermometry. Geochimica Et Cosmochimica Acta, 2020, 290, 366-390.	3.9	15

#	Article	IF	CITATIONS
163	Kâ€Thâ€Ti systematics and new threeâ€component mixing model of HED meteorites: Prospective study for interpretation of gammaâ€ray and neutron spectra for the Dawn mission. Meteoritics and Planetary Science, 2010, 45, 1170-1190.	1.6	14
164	Grosvenor Mountains 95 howardite pairing group: Insights into the surface regolith of asteroid 4 Vesta. Meteoritics and Planetary Science, 2016, 51, 167-194.	1.6	13
165	Redox effects in ordinary chondrites and implications for asteroid spectrophotometry. Icarus, 1992, 95, 239-243.	2.5	12
166	Martian meteorites as crustal samples. , 2008, , 381-396.		12
167	Reexamining the relationship between Apollinaris Patera and the basalts of the Gusev crater plains, Mars. Journal of Geophysical Research, 2010, 115, .	3.3	12
168	Fractionated sulfur isotopes in sulfides of the Kaidun meteorite. Meteoritics and Planetary Science, 1997, 32, 51-54.	1.6	11
169	Glasses in howardites: Impact melts or pyroclasts?. Meteoritics and Planetary Science, 2013, 48, 715-729.	1.6	11
170	Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data. Icarus, 2017, 286, 35-45.	2.5	11
171	Petrology and geochemistry of olivineâ€phyric shergottites <scp>LAR</scp> 12095 and <scp>LAR</scp> 12240: Implications for their petrogenetic history on Mars. Meteoritics and Planetary Science, 2019, 54, 811-835.	1.6	11
172	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, 667-671.	1.6	11
173	Implications of observed primary lithologies. , 2008, , 501-518.		10
174	Thermal emission spectra of terrestrial alkaline volcanic rocks: Applications to Martian remote sensing. Journal of Geophysical Research, 2007, 112, .	3.3	9
175	Basaltic Rocks Analyzed by the Spirit Rover in Gusev Crater. Science, 2004, 305, 842-845.	12.6	9
176	Dawn's Gamma Ray and Neutron Detector. , 2011, , 371-459.		8
177	Spacecraft instrument technology and cosmochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19177-19182.	7.1	8
178	Dawn at Vesta: Paradigms and Paradoxes. , 2017, , 321-339.		8
179	Mgâ€rich harzburgites from Vesta: Mantle residua or cumulates from planetary differentiation?. Meteoritics and Planetary Science, 2018, 53, 514-546.	1.6	8
180	Ferroan olivineâ€bearing eucrite clasts found in howardites. Meteoritics and Planetary Science, 2018, 53, 1131-1149.	1.6	6

#	Article	IF	CITATIONS
181	In situ laser ablation <scp>ICP</scp> â€ <scp>MS</scp> analyses of dimict diogenites: Further evidence for harzburgitic and orthopyroxenitic lithologies. Meteoritics and Planetary Science, 2013, 48, 1050-1059.	1.6	5
182	Overview of the composition of asteroid 4 Vesta: Constraints from the Dawn spacecraft mission and <scp>HED</scp> s. Meteoritics and Planetary Science, 2013, 48, 2073-2075.	1.6	4
183	Science Drivers for the Future Exploration of Ceres: From Solar System Evolution to Ocean World Science. Planetary Science Journal, 2022, 3, 64.	3.6	4
184	The role of meteoritics in spaceflight missions and vice versa. Meteoritics and Planetary Science, 1996, 31, 727-738.	1.6	3
185	Volatility in Martian magmas. Nature, 2009, 458, 45-45.	27.8	3
186	A chunk of ancient Mars. Nature, 2013, 503, 473-474.	27.8	2
187	Two new eucrite breccias from Northwest Africa. Meteoritics and Planetary Science, 2013, 48, E1.	1.6	2
188	Replenishment of Near‧urface Water Ice by Impacts Into Ceres' Volatileâ€Rich Crust: Observations by Dawn's Gamma Ray and Neutron Detector. Geophysical Research Letters, 2021, 48, e2021GL094223.	4.0	2
189	Protoplanet Vesta and HED Meteorites. , 2022, , 41-52.		2
190	Composition of dwarf planet Ceres: Constraints from the Dawn spacecraft mission. Meteoritics and Planetary Science, 2018, 53, 1775-1777.	1.6	1
191	Ceres, a wet planet: The view after Dawn. Chemie Der Erde, 2022, 82, 125745.	2.0	1