
Jana Zernant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparisons Among Optical Coherence Tomography and Fundus Autofluorescence Modalities as Measurements of Atrophy in <i>ABCA4</i> -Associated Disease. Translational Vision Science and Technology, 2022, 11, 36.	2.2	1
2	Rare and common variants in ROM1 and PRPH2 genes trans-modify Stargardt/ABCA4 disease. PLoS Genetics, 2022, 18, e1010129.	3.5	8
3	Longitudinal Analysis of a Resolving Foveomacular Vitelliform Lesion in ABCA4 Disease. Ophthalmology Retina, 2022, 6, 847-860.	2.4	1
4	<i>Cis</i> -acting modifiers in the <i>ABCA4</i> locus contribute to the penetrance of the major disease-causing variant in Stargardt disease. Human Molecular Genetics, 2021, 30, 1293-1304.	2.9	25
5	Reevaluating the Association of Sex With <i>ABCA4</i> Alleles in Patients With Stargardt Disease. JAMA Ophthalmology, 2021, 139, 654.	2.5	3
6	Modification of the <i>PROM1</i> disease phenotype by a mutation in <i>ABCA4</i> . Ophthalmic Genetics, 2019, 40, 369-375.	1.2	17
7	Characteristic Ocular Features in Cases of Autosomal Recessive PROM1 Cone-Rod Dystrophy. , 2019, 60, 2347.		11
8	CLINICAL CHARACTERIZATION OF STARGARDT DISEASE PATIENTS WITH THE p.N1868I ABCA4 MUTATION. Retina, 2019, 39, 2311-2325.	1.7	15
9	Late-onset pattern macular dystrophy mimicking <i>ABCA4</i> and <i>PRPH2</i> disease is caused by a homozygous frameshift mutation in <i>ROM1</i> . Journal of Physical Education and Sports Management, 2019, 5, a003624.	1.2	8
10	Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. American Journal of Human Genetics, 2018, 102, 517-527.	6.2	105
11	The Rapid-Onset Chorioretinopathy Phenotype of ABCA4 Disease. Ophthalmology, 2018, 125, 89-99.	5.2	39
12	Penetrance of the <i>ABCA4</i> p.Asn1868Ile Allele in Stargardt Disease. , 2018, 59, 5564.		10
13	Extremely hypomorphic and severe deep intronic variants in the <i>ABCA4</i> locus result in varying Stargardt disease phenotypes. Journal of Physical Education and Sports Management, 2018, 4, a002733.	1.2	61
14	Deep Scleral Exposure: A Degenerative Outcome of End-Stage Stargardt Disease. American Journal of Ophthalmology, 2018, 195, 16-25.	3.3	10
15	<i>In Silico</i> Functional Meta-Analysis of 5,962 <i>ABCA4</i> Variants in 3,928 Retinal Dystrophy Cases. Human Mutation, 2017, 38, 400-408.	2.5	118
16	Genome-wide analyses identify common variants associated with macular telangiectasia type 2. Nature Genetics, 2017, 49, 559-567.	21.4	105
17	Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. Journal of Medical Genetics, 2017, 54, 404-412.	3.2	140
18	Genotypic spectrum and phenotype correlations of ABCA4-associated disease in patients of south Asian descent. European Journal of Human Genetics, 2017, 25, 735-743.	2.8	31

JANA ZERNANT

#	Article	IF	CITATIONS
19	Simultaneous Expression of ABCA4 and GPR143 Mutations: A Complex Phenotypic Manifestation. , 2016, 57, 3409.		6
20	Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes. Human Genetics, 2016, 135, 9-19.	3.8	39
21	Recessive Stargardt disease phenocopying hydroxychloroquine retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 865-872.	1.9	15
22	Near-Infrared Autofluorescence: Its Relationship to Short-Wavelength Autofluorescence and Optical Coherence Tomography in Recessive Stargardt Disease. , 2015, 56, 3226.		40
23	Quantitative Fundus Autofluorescence and Optical Coherence Tomography inABCA4Carriers. , 2015, 56, 7274.		28
24	Quantitative Fundus Autofluorescence and Optical Coherence Tomography in <i>PRPH2/RDS</i> and <i>ABCA4</i> -Associated Disease Exhibiting Phenotypic Overlap. , 2015, 56, 3159.		56
25	Objective Analysis of Hyperreflective Outer Retinal Bands Imaged by Optical Coherence Tomography in Patients With Stargardt Disease. , 2015, 56, 4662.		20
26	Quantitative Autofluorescence as a Clinical Tool for Expedited Differential Diagnosis of Retinal Degeneration. JAMA Ophthalmology, 2015, 133, 219.	2.5	8
27	Clinical and Molecular Characteristics ofÂChildhood-Onset Stargardt Disease. Ophthalmology, 2015, 122, 326-334.	5.2	146
28	New Mutations in the <i>RAB28</i> Gene in 2 Spanish Families With Cone-Rod Dystrophy. JAMA Ophthalmology, 2015, 133, 133.	2.5	28
29	Quantitative Fundus Autofluorescence Distinguishes ABCA4-Associated and Non–ABCA4-Associated Bull's-Eye Maculopathy. Ophthalmology, 2015, 122, 345-355.	5.2	75
30	The External Limiting Membrane in Early-Onset Stargardt Disease. , 2014, 55, 6139.		54
31	Structural and Genetic Assessment of the ABCA4-Associated Optical Gap Phenotype. , 2014, 55, 7217.		30
32	Genetic and Clinical Analysis of <i> <scp>ABCA</scp> 4 </i> â€Associated Disease in African American Patients. Human Mutation, 2014, 35, 1187-1194.	2.5	42
33	Correlations Among Near-Infrared and Short-Wavelength Autofluorescence and Spectral-Domain Optical Coherence Tomography in Recessive Stargardt Disease. Investigative Ophthalmology and Visual Science, 2014, 55, 8134-8143.	3.3	69
34	Retinal Phenotypes in Patients Homozygous for the G1961E Mutation in the <i>ABCA4</i> Gene. , 2012, 53, 4458.		81
35	Functional Analysis of Retinal Flecks in Stargardt Disease. Journal of Clinical & Experimental Ophthalmology, 2012, 03, .	0.1	17
36	Analysis of the <i>ABCA4</i> Gene by Next-Generation Sequencing. , 2011, 52, 8479.		133

3

#	Article	IF	CITATIONS
37	Extended haplotypes in the complement factor H (<i>CFH</i>) and CFHâ€related (<i>CFHR</i>) family of genes protect against ageâ€related macular degeneration: Characterization, ethnic distribution and evolutionary implications. Annals of Medicine, 2006, 38, 592-604.	3.8	217
38	Genotyping Microarray (Disease Chip) for Leber Congenital Amaurosis: Detection of Modifier Alleles. , 2005, 46, 3052.		153

4