Alexander B Barnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8975810/publications.pdf

Version: 2024-02-01

44 papers 1,807 citations

361413 20 h-index 265206 42 g-index

44 all docs

44 docs citations

times ranked

44

1278 citing authors

#	Article	IF	CITATIONS
1	Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance. IEEE Transactions on Plasma Science, 2010, 38, 1150-1159.	1.3	216
2	THz Dynamic Nuclear Polarization NMR. IEEE Transactions on Terahertz Science and Technology, 2011, 1, 145-163.	3.1	161
3	High-Field Dynamic Nuclear Polarization with High-Spin Transition Metal lons. Journal of the American Chemical Society, 2011, 133, 5648-5651.	13.7	119
4	Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. Journal of Magnetic Resonance, 2009, 198, 261-270.	2.1	108
5	Solid effect dynamic nuclear polarization and polarization pathways. Journal of Chemical Physics, 2012, 136, 015101.	3.0	99
6	Solid-State Photodimerization Kinetics of \hat{l}_{\pm} -trans-Cinnamic Acid to \hat{l}_{\pm} -Truxillic Acid Studied via Solid-State NMR. Journal of Physical Chemistry B, 2006, 110, 6270-6273.	2.6	92
7	Resolution and polarization distribution in cryogenic DNP/MAS experiments. Physical Chemistry Chemical Physics, 2010, 12, 5861.	2.8	87
8	A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization. Journal of Magnetic Resonance, 2012, 221, 147-153.	2.1	87
9	Dynamic nuclear polarization at 700MHz/460GHz. Journal of Magnetic Resonance, 2012, 224, 1-7.	2.1	85
10	Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe. Journal of Magnetic Resonance, 2011, 210, 16-23.	2.1	73
11	Dynamic Nuclear Polarization Study of Inhibitor Binding to the M2 _{18–60} Proton Transporter from Influenza A. Biochemistry, 2013, 52, 2774-2782.	2.5	66
12	Peptide and Protein Dynamics and Low-Temperature/DNP Magic Angle Spinning NMR. Journal of Physical Chemistry B, 2017, 121, 4997-5006.	2.6	60
13	Dynamic Nuclear Polarization Nuclear Magnetic Resonance in Human Cells Using Fluorescent Polarizing Agents. Biochemistry, 2018, 57, 4741-4746.	2.5	58
14	Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. Journal of the American Chemical Society, 2017, 139, 6310-6313.	13.7	57
15	Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. Journal of Magnetic Resonance, 2018, 289, 45-54.	2.1	47
16	Magic angle spinning spheres. Science Advances, 2018, 4, eaau1540.	10.3	40
17	Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization. Solid State Nuclear Magnetic Resonance, 2015, 72, 79-89.	2.3	36
18	Combinations of isoform-targeted histone deacetylase inhibitors and bryostatin analogues display remarkable potency to activate latent HIV without global T-cell activation. Scientific Reports, 2017, 7, 7456.	3.3	32

#	Article	IF	Citations
19	Magic angle spinning NMR below 6†K with a computational fluid dynamics analysis of fluid flow and temperature gradients. Journal of Magnetic Resonance, 2018, 286, 1-9.	2.1	32
20	REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS Central Science, 2018, 4, 89-96.	11.3	28
21	Four millimeter spherical rotors spinning at 28†kHz with double-saddle coils for cross polarization NMR. Journal of Magnetic Resonance, 2019, 303, 1-6.	2.1	21
22	Frequency-chirped dynamic nuclear polarization with magic angle spinning using a frequency-agile gyrotron. Journal of Magnetic Resonance, 2019, 308, 106586.	2.1	18
23	Pulsed Electron Decoupling and Strategies for Time Domain Dynamic Nuclear Polarization with Magic Angle Spinning. Journal of Physical Chemistry Letters, 2018, 9, 5539-5547.	4.6	17
24	Dynamic Nuclear Polarization with Electron Decoupling in Intact Human Cells and Cell Lysates. Journal of Physical Chemistry B, 2020, 124, 2323-2330.	2.6	16
25	A versatile custom cryostat for dynamic nuclear polarization supports multiple cryogenic magic angle spinning transmission line probes. Journal of Magnetic Resonance, 2018, 297, 23-32.	2.1	15
26	Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90 L of liquid nitrogen per day. Journal of Magnetic Resonance, 2017, 283, 71-78.	2.1	14
27	In Situ Detection of Endogenous HIV Activation by Dynamic Nuclear Polarization NMR and Flow Cytometry. International Journal of Molecular Sciences, 2020, 21, 4649.	4.1	13
28	Electron decoupling with cross polarization and dynamic nuclear polarization below 6â€K. Journal of Magnetic Resonance, 2018, 295, 1-5.	2.1	12
29	High-resolution solid-state NMR structure of Alanyl-Prolyl-Glycine. Journal of Magnetic Resonance, 2009, 200, 95-100.	2.1	11
30	Electron Decoupling with Chirped Microwave Pulses for Rapid Signal Acquisition and Electron Saturation Recovery. Angewandte Chemie - International Edition, 2019, 58, 7259-7262.	13.8	11
31	Biomolecular Perturbations in In-Cell Dynamic Nuclear Polarization Experiments. Frontiers in Molecular Biosciences, 2021, 8, 743829.	3.5	10
32	Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance. IEEE Transactions on Electron Devices, 2010, 38, 1150-1159.	3.0	10
33	Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators. Magnetic Resonance in Chemistry, 2018, 56, 831-835.	1.9	9
34	Characterization of frequency-chirped dynamic nuclear polarization in rotating solids. Journal of Magnetic Resonance, 2020, 313, 106702.	2.1	8
35	Highly stable magic angle spinning spherical rotors. Magnetic Resonance, 2020, 1, 97-103.	1.9	8
36	Sensitivity analysis of magic angle spinning dynamic nuclear polarization below 6†K. Journal of Magnetic Resonance, 2019, 305, 51-57.	2.1	7

3

#	Article	IF	CITATIONS
37	Perspectives on microwave coupling into cylindrical and spherical rotors with dielectric lenses for magic angle spinning dynamic nuclear polarization. Journal of Magnetic Resonance, 2019, 308, 106518.	2.1	6
38	330 GHz helically corrugated waveguide. , 2011, , .		4
39	Electron Decoupling with Chirped Microwave Pulses for Rapid Signal Acquisition and Electron Saturation Recovery. Angewandte Chemie, 2019, 131, 7337-7340.	2.0	4
40	Fast electron paramagnetic resonance magic angle spinning simulations using analytical powder averaging techniques. Journal of Chemical Physics, 2019, 151, 114107.	3.0	3
41	Two millimeter diameter spherical rotors spinning at 68 kHz for MAS NMR. Journal of Magnetic Resonance Open, 2021, 8-9, 100015.	1.1	3
42	Setting the magic angle using single crystal sapphire rotors. Journal of Magnetic Resonance Open, 2021, 8-9, 100019.	1.1	3
43	Pneumatic angle adjustment for magic angle spinning spherical rotors. Journal of Magnetic Resonance Open, 2021, 6-7, 100014.	1.1	1
44	The Clebsch–Gordan Coefficients and Their Application to Magnetic Resonance. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2022, 2022, 1-18.	0.5	0