Dustin A Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8975097/publications.pdf

Version: 2024-02-01

70 2,197 26 45 papers citations h-index g-index

71 71 71 71 3270

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Reflectometry with Polarized Neutrons on In Situ Grown Thin Films. Physica Status Solidi (B): Basic Research, 2022, 259, 2100153.	1.5	3
2	Persistent Structure and Frustrated Magnetism in High Entropy Rareâ€Earth Zirconates. Small, 2022, 18, e2101323.	10.0	16
3	Controlling magnetic configuration in soft–hard bilayers probed by polarized neutron reflectometry. APL Materials, 2022, 10, 011107.	5.1	1
4	Magnetic and Optical Properties of Au–Co Solid Solution and Phase-Separated Thin Films and Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15047-15058.	8.0	5
5	The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 2022, 10, 041106.	5.1	3
6	3D Nanomagnetism in Low Density Interconnected Nanowire Networks. Nano Letters, 2021, 21, 716-722.	9.1	39
7	FORC Diagrams in Magnetic Thin Films. , 2021, , 629-650.		O
8	Reconstructing phase-resolved hysteresis loops from first-order reversal curves. Scientific Reports, 2021, 11, 4018.	3.3	16
9	Exploring the composition, phase separation and structure of AgFe alloys for magneto-optical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 266, 115044.	3 . 5	10
10	Using methodical compositional tuning to optimize CoxTb1â^'x structural and magnetic properties. Applied Physics Letters, 2021, 118, 212405.	3.3	1
11	Charge doping effects on magnetic properties of single-crystal <mml:math< td=""><td></td><td></td></mml:math<>		

#	Article	IF	CITATIONS
19	Optical and Magnetic Properties of Ag–Ni Bimetallic Nanoparticles Assembled via Pulsed Laser-Induced Dewetting. ACS Omega, 2020, 5, 19285-19292.	3.5	34
20	Termination switching of antiferromagnetic proximity effect in topological insulator. Science Advances, 2020, 6, eaaz8463.	10.3	20
21	Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nature Electronics, 2020, 3, 757-764.	26.0	99
22	Magnetic field frustration of the metal-insulator transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">V</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">V</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> .	3.2	20
23	Physical Review B. 2020 101 Design and realization of a sputter deposition system for the in situ and in operando use in polarized neutron reflectometry experiments: Novel capabilities. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 964, 163710.	1.6	5
24	Indications for Dzyaloshinskii-Moriya interaction at the Pd/Fe interface studied by $\langle i \rangle$ in situ $\langle i \rangle$ polarized neutron reflectometry. Physical Review B, 2020, 101, .	3.2	6
25	Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Science Advances, 2020, 6, eaay0114.	10.3	43
26	Record thermopower found in an IrMn-based spintronic stack. Nature Communications, 2020, 11, 2023.	12.8	16
27	The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Materials, 2020, 8, .	5.1	152
28	Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nature Nanotechnology, 2020, 15, 482-490.	31.5	78
29	Nonvolatile Ionic Modification of the Dzyaloshinskii-Moriya Interaction. Physical Review Applied, 2019, 12, .	3.8	59
30	Exploring interfacial exchange coupling and sublattice effect in heavy metal/ferrimagnetic insulator heterostructures using Hall measurements, x-ray magnetic circular dichroism, and neutron reflectometry. Physical Review B, 2019, 99, .	3.2	39
31	Damping Enhancement in Coherent Ferrite–Insulating-Paramagnet Bilayers. Physical Review Applied, 2019, 12, .	3.8	8
32	Hydrogen finds a home in ionic devices. Nature Materials, 2019, 18, 7-8.	27.5	6
33	Precipitating ordered skyrmion lattices from helical spaghetti and granular powders. Physical Review Materials, 2019, 3, .	2.4	12
34	Nanoscale magnetization inhomogeneity within single phase nanopillars. Physical Review Materials, 2019, 3, .	2.4	5
35	X-ray nanodiffraction studies of ionically controlled nanoscale phase separation in cobaltites. Physical Review Materials, 2019, 3, .	2.4	8
36	Realization of ordered magnetic skyrmions in thin films at ambient conditions. Physical Review Materials, 2019, 3, .	2.4	30

#	Article	IF	CITATIONS
37	Tunable magnetic ordering through cation selection in entropic spinel oxides. Physical Review Materials, 2019, 3, .	2.4	57
38	Voltage-Controlled ON–OFF Ferromagnetism at Room Temperature in a Single Metal Oxide Film. ACS Nano, 2018, 12, 10291-10300.	14.6	57
39	Exchange-biasing topological charges by antiferromagnetism. Nature Communications, 2018, 9, 2767.	12.8	61
40	Resolving interfacial charge transfer in titanate superlattices using resonant x-ray reflectometry. Physical Review Materials, 2018, 2, .	2.4	1
41	Strain-induced competition between ferromagnetism and emergent antiferromagnetism in (Eu,Sr) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MnO</mml:mi><mml:mn>3<td>2.4 nn><td>:msub></td></td></mml:mn></mml:msub></mml:math>	2.4 nn> <td>:msub></td>	:msub>
42	lonic tuning of cobaltites at the nanoscale. Physical Review Materials, 2018, 2, .	2.4	32
43	Tunable Low Density Palladium Nanowire Foams. Chemistry of Materials, 2017, 29, 9814-9818.	6.7	32
44	Growth-Induced In-Plane Uniaxial Anisotropy in V2O3/Ni Films. Scientific Reports, 2017, 7, 13471.	3.3	14
45	Magnetization Reversal of Three-Dimensional Nickel Anti-Sphere Arrays. IEEE Magnetics Letters, 2017, 8, 1-4.	1.1	3
46	First-order reversal curve of the magnetostructural phase transition in FeTe. Physical Review B, 2017, 95, .	3.2	7
47	Realization of Ground-State Artificial Skyrmion Lattices at Room Temperature., 2016,,.		1
48	Reversible control of magnetism in La0.67Sr0.33MnO3 through chemically-induced oxygen migration. Applied Physics Letters, 2016, 108, .	3.3	33
49	Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers. Scientific Reports, 2016, 6, 32842.	3.3	19
50	Controllable positive exchange bias via redox-driven oxygen migration. Nature Communications, 2016, 7, 11050.	12.8	101
51	Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nature Communications, 2016, 7, 12264. Concurrent magnetic and structural reconstructions at the interface of (111)-oriented < mml:math	12.8	107
52	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">L</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mrow><mml:mn>0.7</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi< td=""><td>3.2</td><td>26</td></mml:mi<></mml:msub></mml:mrow>	3.2	26
53	mathvariant="normal">r <mml:mrow><mml:mn>0.3</mml:mn></mml:mrow> <mml:mi>M Lengthscale effects on exchange coupling in Co-Pt L1 + L12 nanochessboards. APL Materials, 2016, 4, .</mml:mi>	n5.1	i> <mml:msu 7</mml:msu
54	Magnetometry-based order parameter to probe the A1 to L1 <inf>0</inf> transformation in FeCuPt for heat-assisted magnetic recording media., 2015,,.		0

#	Article	IF	Citations
55	A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex. Nanoscale, 2015, 7, 9878-9885.	5.6	18
56	Realization of ground-state artificial skyrmion lattices at room temperature. Nature Communications, 2015, 6, 8462.	12.8	184
57	Accessing different spin-disordered states using first-order reversal curves. Physical Review B, 2014, 90, .	3.2	16
58	Magnetization reversal in perpendicularly magnetized L1 FePd/FePt heterostructures. Journal of Applied Physics, $2014,116,116$	2.5	9
59	Probing the $\langle i \rangle A \langle i \rangle 1$ to $\langle i \rangle L \langle i \rangle 1$ transformation in FeCuPt using the first order reversal curve method. APL Materials, 2014, 2, .	5.1	28
60	Quantitative Decoding of Interactions in Tunable Nanomagnet Arrays Using First Order Reversal Curves. Scientific Reports, 2014, 4, 4204.	3.3	125
61	Reversal mode instability and magnetoresistance in perpendicular (Co/Pd)/Cu/(Co/Ni) pseudo-spin-valves. Applied Physics Letters, 2013, 103, .	3.3	21
62	Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials. Superconductor Science and Technology, 2013, 26, 085018.	3.5	6
63	Tuning magnetic anisotropy in (001) oriented L1 (Fe1â^'xCux)55Pt45 films. Applied Physics Letters, 2013, 102, .	3.3	66
64	Size-dependent magnetization switching characteristics and spin wave modes of FePt nanostructures. Journal of Applied Physics, 2013, 113 , .	2.5	11
65	Control of dissipation in superconducting films by magnetic stray fields. Applied Physics Letters, 2013, 102, 052601.	3.3	15
66	Microwave enhanced silica encapsulation of magnetic nanoparticles. Journal of Materials Chemistry, 2012, 22, 8449.	6.7	23
67	Rapid Size-Controlled Synthesis of Dextran-Coated, ⁶⁴ Cu-Doped Iron Oxide Nanoparticles. ACS Nano, 2012, 6, 3461-3467.	14 . 6	113
68	Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology, 2012, 23, 215602.	2.6	83
69	Fingerprinting Inhomogeneities in Recording Media Using the First-Order Reversal Curve Method. IEEE Transactions on Magnetics, 2011, 47, 2988-2991.	2.1	27
70	Chirality control via double vortices in asymmetric Co dots. Physical Review B, 2011, 83, .	3.2	33