
Elizabeth C Cropper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feeding Neural Networks in the Mollusc <i>Aplysia</i> . NeuroSignals, 2004, 13, 70-86.	0.5	105
2	The Construction of Movement with Behavior-Specific and Behavior-Independent Modules. Journal of Neuroscience, 2004, 24, 6315-6325.	1.7	92
3	Differential firing patterns of the peptide-containing cholinergic motor neurons B15 and B16 during feeding behavior inAplysia. Brain Research, 1990, 522, 176-179.	1.1	84
4	Peptide Cotransmitter Release from Motorneuron B16 inAplysia californica: Costorage, Corelease, and Functional Implications. Journal of Neuroscience, 2000, 20, 2036-2042.	1.7	72
5	Proprioceptive Input to Feeding Motor Programs inAplysia. Journal of Neuroscience, 1998, 18, 8016-8031.	1.7	58
6	Structure, bioactivity, and cellular localization of myomodulin B: A novel Aplysia peptide. Peptides, 1991, 12, 683-690.	1.2	50
7	Distinct Mechanisms Produce Functionally Complementary Actions of Neuropeptides That Are Structurally Related But Derived from Different Precursors. Journal of Neuroscience, 2010, 30, 131-147.	1.7	50
8	Buccalin is present in the cholinergic motor neuron B16 ofAplysia and it depresses accessory radula closer muscle contractions evoked by stimulation of B16. Brain Research, 1990, 512, 175-179.	1.1	49
9	Diverse Synaptic Connections Between Peptidergic Radula Mechanoafferent Neurons and Neurons in the Feeding System of Aplysia. Journal of Neurophysiology, 2000, 83, 1605-1620.	0.9	47
10	Feedforward Compensation Mediated by the Central and Peripheral Actions of a Single Neuropeptide Discovered Using Representational Difference Analysis. Journal of Neuroscience, 2010, 30, 16545-16558.	1.7	46
11	Regulation of Spike Initiation and Propagation in anAplysiaSensory Neuron: Gating-In via Central Depolarization. Journal of Neuroscience, 2003, 23, 2920-2931.	1.7	44
12	Outputs of Radula Mechanoafferent Neurons in <i>Aplysia</i> are Modulated by Motor Neurons, Interneurons, and Sensory Neurons. Journal of Neurophysiology, 2000, 83, 1621-1636.	0.9	36
13	Variability of Swallowing Performance in Intact, Freely Feeding Aplysia. Journal of Neurophysiology, 2005, 94, 2427-2446.	0.9	35
14	Neural Analog of Arousal: Persistent Conditional Activation of a Feeding Modulator by Serotonergic Initiators of Locomotion. Journal of Neuroscience, 2008, 28, 12349-12361.	1.7	35
15	A Proprioceptive Role for an Exteroceptive Mechanoafferent Neuron in <i>Aplysia</i> . Journal of Neuroscience, 2000, 20, 1990-2002.	1.7	34
16	Consequences of degeneracy in network function. Current Opinion in Neurobiology, 2016, 41, 62-67.	2.0	33
17	Structure, localization, and action of buccalin B: A bioactive peptide from Aplysia. Peptides, 1994, 15, 959-969.	1.2	32
18	Functional Differentiation of a Population of Electrically Coupled Heterogeneous Elements in a Microcircuit. Journal of Neuroscience, 2013, 33, 93-105.	1.7	31

ELIZABETH C CROPPER

#	Article	IF	CITATIONS
19	Peptide Cotransmitters as Dynamic, Intrinsic Modulators of Network Activity. Frontiers in Neural Circuits, 2018, 12, 78.	1.4	27
20	A Pair of Reciprocally Inhibitory Histaminergic Sensory Neurons Are Activated within the Same Phase of Ingestive Motor Programs inAplysia. Journal of Neuroscience, 1999, 19, 845-858.	1.7	26
21	Modulation of Radula Opener Muscles in <i>Aplysia</i> . Journal of Neurophysiology, 1999, 82, 1339-1351.	0.9	23
22	Complementary Interactions between Command-Like Interneurons that Function to Activate and Specify Motor Programs. Journal of Neuroscience, 2014, 34, 6510-6521.	1.7	23
23	Sonometric Measurements of Motor-Neuron-Evoked Movements of an Internal Feeding Structure (the) Tj ETQq1	1 8.78431	4_rgBT /Ove
24	Afferent-Induced Changes in Rhythmic Motor Programs in the Feeding Circuitry of Aplysia. Journal of Neurophysiology, 2004, 92, 2312-2322.	0.9	20
25	Repetition priming of motor activity mediated by a central pattern generator: the importance of extrinsic vs. intrinsic program initiators. Journal of Neurophysiology, 2016, 116, 1821-1830.	0.9	20
26	Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. Journal of Biological Chemistry, 2017, 292, 18775-18789.	1.6	20
27	Use of the Aplysia feeding network to study repetition priming of an episodic behavior. Journal of Neurophysiology, 2017, 118, 1861-1870.	0.9	19
28	Neuromodulation as a mechanism for the induction of repetition priming. Current Opinion in Neurobiology, 2014, 29, 33-38.	2.0	18
29	Multifaceted Expression of Peptidergic Modulation in the Feeding System of <i>Aplysia</i> . ACS Chemical Neuroscience, 2018, 9, 1917-1927.	1.7	18
30	Two Distinct Mechanisms Mediate Potentiating Effects of Depolarization on Synaptic Transmission. Journal of Neurophysiology, 2009, 102, 1976-1983.	0.9	17
31	Glutamate is the fast excitatory neurotransmitter of Small Cardioactive Peptide – containing Aplysia radula mechanoafferent neuron B21. Neuroscience Letters, 2000, 289, 37-40.	1.0	16
32	Aplysia Locomotion: Network and Behavioral Actions of GdFFD, a D-Amino Acid-Containing Neuropeptide. PLoS ONE, 2016, 11, e0147335.	1.1	16
33	Network Degeneracy and the Dynamics of Task Switching in the Feeding Circuit in <i>Aplysia</i> . Journal of Neuroscience, 2019, 39, 8705-8716.	1.7	16
34	Mechanoafferent Neuron With An Inexcitable Somatic Region: Consequences for the Regulation of Spike Propagation and Afferent Transmission. Journal of Neurophysiology, 2007, 97, 3126-3130.	0.9	15
35	Functional Characterization of a Vesicular Glutamate Transporter in an Interneuron That Makes Excitatory and Inhibitory Synaptic Connections in a Molluscan Neural Circuit. Journal of Neuroscience, 2015, 35, 9137-9149.	1.7	15
36	Synaptic mechanisms for motor variability in a feedforward network. Science Advances, 2020, 6, .	4.7	15

ELIZABETH C CROPPER

#	Article	IF	CITATIONS
37	Specificity of Repetition Priming: The Role of Chemical Coding. Journal of Neuroscience, 2015, 35, 6326-6334.	1.7	14
38	Synaptic mechanisms in invertebrate pattern generation. Current Opinion in Neurobiology, 1996, 6, 833-841.	2.0	13
39	Frequency-Dependent Regulation of Afferent Transmission in the Feeding Circuitry of Aplysia. Journal of Neurophysiology, 2003, 90, 3967-3977.	0.9	13
40	Newly Identified Aplysia SPTR-Gene Family-Derived Peptides: Localization and Function. ACS Chemical Neuroscience, 2018, 9, 2041-2053.	1.7	13
41	Coordination of Distinct Motor Structures through Remote Axonal Coupling of Projection Interneurons. Journal of Neuroscience, 2011, 31, 15438-15449.	1.7	11
42	Cellular Effects of Repetition Priming in the <i>Aplysia</i> Feeding Network Are Suppressed during a Task-Switch But Persist and Facilitate a Return to the Primed State. Journal of Neuroscience, 2018, 38, 6475-6490.	1.7	10
43	The Complement of Projection Neurons Activated Determines the Type of Feeding Motor Program in Aplysia. Frontiers in Neural Circuits, 2021, 15, 685222.	1.4	9
44	Effect of a Serotonergic Extrinsic Modulatory Neuron (MCC) on Radula Mechanoafferent Function in Aplysia. Journal of Neurophysiology, 1998, 80, 1609-1622.	0.9	8
45	Regulation of afferent transmission in the feeding circuitry ofAplysia. Acta Biologica Hungarica, 2004, 55, 211-220.	0.7	8
46	Inhibition of Afferent Transmission in the Feeding Circuitry of Aplysia: Persistence Can Be as Important as Size. Journal of Neurophysiology, 2005, 93, 2940-2949.	0.9	7
47	Selective Spike Propagation in the Central Processes of an Invertebrate Neuron. Journal of Neurophysiology, 2008, 100, 2940-2947.	0.9	7
48	Convergent effects of neuropeptides on the feeding central pattern generator of <i>Aplysia californica</i> . Journal of Neurophysiology, 2022, 127, 1445-1459.	0.9	7
49	Effect of Holding Potential on the Dynamics of Homosynaptic Facilitation. Journal of Neuroscience, 2011, 31, 11039-11043.	1.7	5
50	Activity-dependent increases in [Ca2+]i contribute to digital-analog plasticity at a molluscan synapse. Journal of Neurophysiology, 2017, 117, 2104-2112.	0.9	5
51	Persistent effects of cyclic adenosine monophosphate are directly responsible for maintaining a neural network state. Scientific Reports, 2019, 9, 9058.	1.6	5
52	Background calcium induced by subthreshold depolarization modifies homosynaptic facilitation at a synapse in Aplysia. Scientific Reports, 2020, 10, 549.	1.6	5
53	Monitoring Changes in the Intracellular Calcium Concentration and Synaptic Efficacy in the Mollusc Aplysia . Journal of Visualized Experiments, 2012, , e3907.	0.2	4
54	Effect of presynaptic membrane potential on electrical vs. chemical synaptic transmission. Journal of Neurophysiology, 2011, 106, 680-689.	0.9	3

#	Article	IF	CITATIONS
55	Repetition priming-induced changes in sensorimotor transmission. Journal of Neurophysiology, 2016, 115, 1637-1643.	0.9	3
56	An Anticipatory Circuit Modification That Modifies Subsequent Task Switching. Journal of Neuroscience, 2021, 41, 2152-2163.	1.7	1
57	A clarifying method that improves imaging of Aplysia ganglia. Acta Physiologica Sinica, 2017, 69, 461-466.	0.5	Ο