Pangun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8973734/publications.pdf Version: 2024-02-01

Ρληςιίη Ρλάκ

#	Article	IF	CITATIONS
1	Optimized Over-the-Air Computation for Wireless Control Systems. IEEE Communications Letters, 2022, 26, 424-428.	4.1	10
2	Wireless Avionics Intracommunications: A Survey of Benefits, Challenges, and Solutions. IEEE Internet of Things Journal, 2021, 8, 7745-7767.	8.7	24
3	Wireless for Control: Over-the-Air Controller. IEEE Communications Letters, 2021, 25, 3437-3441.	4.1	4
4	Polyvinylidene Fluoride Core–Shell Nanofiber Membranes with Highly Conductive Shells for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2021, 13, 25428-25437.	8.0	25
5	Architectures and Protocols for Wireless Sensor and Actuator Networks. Journal of Sensor and Actuator Networks, 2021, 10, 52.	3.9	0
6	Proactive fault-tolerant wireless mesh networks for mission-critical control systems. Journal of Network and Computer Applications, 2021, 186, 103082.	9.1	6
7	Performance Enhancement of Flexible Polymer Triboelectric Generator through Polarization of the Embedded Ferroelectric Polymer Layer. Applied Sciences (Switzerland), 2021, 11, 1284.	2.5	4
8	A Bluetooth-Based Architecture for Contact Tracing in Healthcare Facilities. Journal of Sensor and Actuator Networks, 2021, 10, 2.	3.9	17
9	Output power density enhancement of triboelectric nanogenerators via ferroelectric polymer composite interfacial layers. Nano Energy, 2020, 67, 104300.	16.0	33
10	Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels. Applied Sciences (Switzerland), 2020, 10, 6204.	2.5	12
11	Remaining Useful Life Estimation of Bearings Using Data-Driven Ridge Regression. Applied Sciences (Switzerland), 2020, 10, 8977.	2.5	11
12	Realization of Electrically Small, Low-Profile Quasi-Isotropic Antenna Using 3D Printing Technology. IEEE Access, 2020, 8, 27067-27073.	4.2	16
13	Electrically Activated Ultrathin PVDFâ€TrFE Air Filter for Highâ€Efficiency PM _{1.0} Filtration. Advanced Functional Materials, 2019, 29, 1903633.	14.9	100
14	Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network. Sensors, 2019, 19, 4612.	3.8	118
15	Channel Measurement and Feasibility Test for Wireless Avionics Intra-Communications. Sensors, 2019, 19, 1294.	3.8	6
16	Robust Wireless Sensor and Actuator Networks for Networked Control Systems. Sensors, 2019, 19, 1535.	3.8	12
17	Remarkable Output Power Density Enhancement of Triboelectric Nanogenerators <i>via</i> Polarized Ferroelectric Polymers and Bulk MoS ₂ Composites. ACS Nano, 2019, 13, 4640-4646.	14.6	92
18	Role of a buried indium zinc oxide layer in the performance enhancement of triboelectric nanogenerators. Nano Energy, 2019, 55, 501-505.	16.0	28

Pangun Park

#	Article	IF	CITATIONS
19	Markov chain model of fault-tolerant wireless networked control systems. Wireless Networks, 2019, 25, 2291-2303.	3.0	9
20	Wireless Network Design for Control Systems: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 978-1013.	39.4	303
21	Transmission Scheduling Schemes of Industrial Wireless Sensors for Heterogeneous Multiple Control Systems. Sensors, 2018, 18, 4284.	3.8	5
22	An ultraviolet and electric field activated photopolymer–ferroelectric nanoparticle composite for the performance enhancement of triboelectric nanogenerators. Nanoscale, 2018, 10, 20995-21000.	5.6	7
23	Robust Channel Allocation with Heterogeneous Requirements for Wireless Mesh Backbone Networks. Sensors, 2018, 18, 2687.	3.8	4
24	Performance Comparison of Industrial Wireless Networks for Wireless Avionics Intra-Communications. IEEE Communications Letters, 2017, 21, 116-119.	4.1	17
25	Cross-Layer Optimization for Industrial Control Applications Using Wireless Sensor and Actuator Mesh Networks. IEEE Transactions on Industrial Electronics, 2017, 64, 3250-3259.	7.9	43
26	Determination of Number of Upstream Subcarriers to Minimize Cycle Time in OFDMA-PON Using Interleaved Polling Method. International Journal of Multimedia and Ubiquitous Engineering, 2016, 11, 223-228.	0.4	1
27	Performance Evaluation and Optimization of Communication Infrastructure for the Next Generation Air Transportation System. IEEE Transactions on Parallel and Distributed Systems, 2015, 26, 1106-1116.	5.6	8
28	Traffic Generation Rate Control of Wireless Sensor and Actuator Networks. IEEE Communications Letters, 2015, 19, 827-830.	4.1	10
29	Power controlled fair access protocol for wireless networked control systems. Wireless Networks, 2015, 21, 1499-1516.	3.0	9
30	Optimized Medium Access Probability for Networked Control Systems. The Journal of the Korean Institute of Information and Communication Engineering, 2015, 19, 2457-2464.	0.1	1
31	Routing and Medium Access Control Interactions for Internet of Things. The Journal of the Korean Institute of Information and Communication Engineering, 2015, 19, 2465-2472.	0.1	0
32	Minimum Energy Data Transmission for Wireless Networked Control Systems. IEEE Transactions on Wireless Communications, 2014, 13, 2163-2175.	9.2	45
33	Hybrid Communication Protocols and Control Algorithms for NextGen Aircraft Arrivals. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 615-626.	8.0	6
34	High Confidence Networked Control for Next Generation Air Transportation Systems. IEEE Transactions on Automatic Control, 2014, 59, 3357-3372.	5.7	32
35	Modeling and Optimization of the IEEE 802.15.4 Protocol for Reliable and Timely Communications. IEEE Transactions on Parallel and Distributed Systems, 2013, 24, 550-564.	5.6	116
36	Duty-cycle optimization for IEEE 802.15.4 wireless sensor networks. ACM Transactions on Sensor Networks, 2013, 10, 1-32.	3.6	35

Pangun Park

#	Article	IF	CITATIONS
37	Modeling and stability analysis of hybrid multiple access in the IEEE 802.15.4 protocol. ACM Transactions on Sensor Networks, 2013, 9, 1-55.	3.6	30
38	Delay distribution analysis of Wireless Personal Area Networks. , 2012, , .		11
39	Investigating Communication Infrastructure of Next Generation Air Traffic Management. , 2012, , .		11
40	Analytical Modeling of Multi-hop IEEE 802.15.4 Networks. IEEE Transactions on Vehicular Technology, 2012, 61, 3191-3208.	6.3	61
41	Breath: An Adaptive Protocol for Industrial Control Applications Using Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2011, 10, 821-838.	5.8	75
42	Wireless networked control system co-design. , 2011, , .		63
43	Time-Delay Estimation and Finite-Spectrum Assignment for Control Over Multi-Hop WSN. , 2011, , 135-152.		3
44	Adaptive IEEE 802.15.4 Medium Access Control Protocol for Control and Monitoring Applications. , 2011, , 271-300.		2
45	Limitations and performances of robust control over WSN: UFAD control in intelligent buildings. IMA Journal of Mathematical Control and Information, 2010, 27, 527-543.	1.7	13
46	Analytical Modelling of IEEE 802.15.4 for Multi-Hop Networks with Heterogeneous Traffic and Hidden Terminals. , 2010, , .		24
47	Adaptive IEEE 802.15.4 protocol for energy efficient, reliable and timely communications. , 2010, , .		38
48	Control over a Hybrid MAC Wireless Network. , 2010, , .		1
49	A generalized Markov chain model for effective analysis of slotted IEEE 802.15.4. , 2009, , .		163
50	Performance Analysis of GTS Allocation in Beacon Enabled IEEE 802.15.4. , 2009, , .		29
51	A Dynamic Energy-efficient Protocol for Reliable and Timely Communications for Wireless Sensor Networks in Control and Automation. , 2009, , .		3