
Patrice Delafontaine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8973689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage-Specific IGF-1 Overexpression Reduces CXCL12 Chemokine Levels and Suppresses Atherosclerotic Burden in Apoe-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 113-126.	2.4	8
2	Authors' Reply. Journal of Molecular Diagnostics, 2022, 24, 103.	2.8	0
3	Multi-Omics Approach Profiling Metabolic Remodeling in Early Systolic Dysfunction and in Overt Systolic Heart Failure. International Journal of Molecular Sciences, 2022, 23, 235.	4.1	5
4	Multiomics Approach Reveals an Important Role of BNIP3 in Myocardial Remodeling and the Pathogenesis of Heart Failure with Reduced Ejection Fraction. Cells, 2022, 11, 1572.	4.1	5
5	Macrophage Specific IGFâ€1 Overexpression Decreases Atherosclerosis, CXCL12 Chemokine, And Increases Cholesterol Efflux In ApoE Deficient Mice. FASEB Journal, 2021, 35, .	0.5	1
6	Glyceraldehydeâ€3â€phosphate dehydrogenase protects smooth muscle cells against oxidative/genotoxic stress by activation of the apurinic/apyrimidinic endonuclease I pathway. FASEB Journal, 2021, 35, .	0.5	0
7	Insulinâ€like growth factor I reduces atherosclerosis in Rapacz pigs. FASEB Journal, 2021, 35, .	0.5	0
8	Ct Values Do Not Predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmissibility in College Students. Journal of Molecular Diagnostics, 2021, 23, 1078-1084.	2.8	29
9	Insulin-Like Growth Factor I Prevents Cellular Aging via Activation of Mitophagy. Journal of Aging Research, 2020, 2020, 1-13.	0.9	15
10	Endothelial deficiency of insulin-like growth factor-1 receptor reduces endothelial barrier function and promotes atherosclerosis in <i>Apoe</i> -deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H730-H743.	3.2	22
11	Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 2020, 9, 1970.	4.1	237
12	Mitochondrial Pathobiology and Metabolic Remodeling in Progression to Overt Systolic Heart Failure. Journal of Clinical Medicine, 2020, 9, 3582.	2.4	12
13	A Rat Model of Pressure Overload Induced Moderate Remodeling and Systolic Dysfunction as Opposed to Overt Systolic Heart Failure. Journal of Visualized Experiments, 2020, , .	0.3	2
14	Minocycline inhibits PDGF-BB-induced human aortic smooth muscle cell proliferation and migration by reversing miR-221- and -222-mediated RECK suppression. Cellular Signalling, 2019, 57, 10-20.	3.6	18
15	Angiotensin II suppresses autophagy and disrupts ultrastructural morphology and function of mitochondria in mouse skeletal muscle. Journal of Applied Physiology, 2019, 126, 1550-1562.	2.5	16
16	Rapid estrogen receptor-α signaling mediated by ERK activation regulates vascular tone in male and ovary-intact female mice. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H330-H342.	3.2	12
17	SM22α (Smooth Muscle Protein 22-α) Promoter-Driven IGF1R (Insulin-Like Growth Factor 1 Receptor) Deficiency Promotes Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2306-2317.	2.4	24
18	Macrophage Insulin‣ike Growth Factor I (IGF1) Upregulates Atherosclerotic Plaque Collagen and Suppresses Atherosclerosis by Reducing Matrix Metalloproteinases FASEB Journal, 2018, 32, 572.7.	0.5	0

#	Article	IF	CITATIONS
19	The effects of a growth hormone-releasing hormone antagonist and a gastrin-releasing peptide antagonist on intimal hyperplasia of the carotid artery after balloon injury in a diabetic rat modelâ~†. Artery Research, 2017, 19, 56.	0.6	Ο
20	The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4. Journal of Cellular Physiology, 2016, 231, 1130-1141.	4.1	64
21	TRAF3IP2 mediates aldosterone/salt-induced cardiac hypertrophy and fibrosis. Molecular and Cellular Endocrinology, 2016, 429, 84-92.	3.2	23
22	Sodium Excretion and the Risk of Cardiovascular Disease in Patients With Chronic Kidney Disease. JAMA - Journal of the American Medical Association, 2016, 315, 2200.	7.4	186
23	Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E–Deficient Mice. Circulation, 2016, 133, 2263-2278.	1.6	91
24	TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE â^'/â^' mice. Atherosclerosis, 2016, 252, 153-160.	0.8	14
25	An Intronic Enhancer Element Regulates Angiotensin II Type 2 Receptor Expression during Satellite Cell Differentiation, and Its Activity Is Suppressed in Congestive Heart Failure. Journal of Biological Chemistry, 2016, 291, 25578-25590.	3.4	11
26	THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES. Transactions of the American Clinical and Climatological Association, 2016, 127, 245-258.	0.5	23
27	Digital Plethysmography and Arginine Metabolism in Prehypertension—Effect of Nebivolol Therapy. Journal of Clinical Hypertension, 2015, 17, 14-19.	2.0	5
28	Kansas City Cardiomyopathy Questionnaire Score Is Associated With Incident Heart Failure Hospitalization in Patients With Chronic Kidney Disease Without Previously Diagnosed Heart Failure. Circulation: Heart Failure, 2015, 8, 702-708.	3.9	22
29	Mechanisms of Cachexia in Chronic Disease States. American Journal of the Medical Sciences, 2015, 350, 250-256.	1.1	85
30	Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase. Atherosclerosis, 2015, 238, 313-320.	0.8	21
31	Elevation of cardiovascular risk by non-steroidal anti-inflammatory drugs. Trends in Cardiovascular Medicine, 2015, 25, 726-735.	4.9	30
32	Urinary Creatinine Excretion, Bioelectrical Impedance Analysis, and Clinical Outcomes in Patients with CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 2095-2103.	4.5	59
33	Acetylsalicylic Acid Inhibits IL-18-Induced Cardiac Fibroblast Migration Through the Induction of RECK. Journal of Cellular Physiology, 2014, 229, 845-855.	4.1	33
34	Protein phosphatase 2C-alpha knockdown reduces angiotensin II-mediated skeletal muscle wasting via restoration of mitochondrial recycling and function. Skeletal Muscle, 2014, 4, 20.	4.2	21
35	Mammographically Detectable Breast Arterial Calcification and Atherosclerosis. Cardiology in Review, 2014, 22, 69-78.	1.4	36
36	Natural Disasters and Myocardial Infarction: The Six Years After Hurricane Katrina. Mayo Clinic Proceedings, 2014, 89, 472-477.	3.0	45

#	Article	IF	CITATIONS
37	Docosahexaenoic acid reverses angiotensin II-induced RECK suppression and cardiac fibroblast migration. Cellular Signalling, 2014, 26, 933-941.	3.6	37
38	Insulin-like Growth Factor-1 Increases Synthesis of Collagen Type I via Induction of the mRNA-binding Protein LARP6 Expression and Binding to the 5′ Stem-loop of COL1a1 and COL1a2 mRNA. Journal of Biological Chemistry, 2014, 289, 7264-7274.	3.4	74
39	Angiotensin Type 2 Receptor Signaling in Satellite Cells Potentiates Skeletal Muscle Regeneration. Journal of Biological Chemistry, 2014, 289, 26239-26248.	3.4	30
40	Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death. Journal of Molecular and Cellular Cardiology, 2014, 75, 141-151.	1.9	35
41	Endovascular Stent-Graft Repair of Ascending Aortic Dissection With a Commercially Available Thoracic Endograft. Annals of Thoracic Surgery, 2014, 98, 715-717.	1.3	10
42	Bortezomib inhibits C2C12 growth by inducing cell cycle arrest and apoptosis. Biochemical and Biophysical Research Communications, 2014, 445, 375-380.	2.1	9
43	Interaction between Insulin-Like Growth Factor-1 and Atherosclerosis and Vascular Aging. Frontiers of Hormone Research, 2014, 43, 107-124.	1.0	45
44	Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: Potential therapeutic targets for cardiac cachexia. International Journal of Biochemistry and Cell Biology, 2013, 45, 2322-2332.	2.8	116
45	The therapeutic potential of IGF-I in skeletal muscle repair. Trends in Endocrinology and Metabolism, 2013, 24, 310-319.	7.1	69
46	Angiotensin II Inhibits Satellite Cell Proliferation and Prevents Skeletal Muscle Regeneration. Journal of Biological Chemistry, 2013, 288, 23823-23832.	3.4	73
47	A Pharmacogenetic versus a Clinical Algorithm for Warfarin Dosing. New England Journal of Medicine, 2013, 369, 2283-2293.	27.0	660
48	Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. Free Radical Biology and Medicine, 2013, 60, 125-135.	2.9	50
49	Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells: Implications for atheroprotective actions of insulin-like growth factor-1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 391-399.	3.8	48
50	Interleukin-18 enhances IL-18R/Nox1 binding, and mediates TRAF3IP2-dependent smooth muscle cell migration. Inhibition by simvastatin. Cellular Signalling, 2013, 25, 1447-1456.	3.6	16
51	Effect of Hurricane Katrina on Chronobiology at Onset of Acute Myocardial Infarction During the Subsequent Three Years. American Journal of Cardiology, 2013, 111, 800-803.	1.6	16
52	A Longitudinal Study of Left Ventricular Function and Structure from CKD to ESRD. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 355-362.	4.5	97
53	Angiotensin II enhances AT ₁ -Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT ₁ , Nox1, and interleukin-18. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H282-H296.	3.2	86
54	Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus. Endocrinology, 2012, 153, 1411-1420.	2.8	56

#	Article	IF	CITATIONS
55	Aging, Atherosclerosis, and IGF-1. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 626-639.	3.6	163
56	β2 adrenergic activation induces the expression of IL-18 binding protein, a potent inhibitor of isoproterenol induced cardiomyocyte hypertrophy in vitro and myocardial hypertrophy in vivo. Journal of Molecular and Cellular Cardiology, 2012, 52, 206-218.	1.9	35
57	Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy. PLoS ONE, 2012, 7, e30276.	2.5	48
58	Skeletal muscle molecular alterations precede whole-muscle dysfunction in NYHA Class II heart failure patients. Clinical Interventions in Aging, 2012, 7, 489.	2.9	10
59	Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cellular Signalling, 2012, 24, 560-568.	3.6	88
60	Effect of Hurricane Katrina on Incidence of Acute Myocardial Infarction in New Orleans Three Years After the Storm. American Journal of Cardiology, 2012, 109, 502-505.	1.6	61
61	Angiotensin II depletes the skeletal muscle satellite cell pool and prevents skeletal muscle regeneration. FASEB Journal, 2012, 26, 1078.7.	0.5	0
62	Symptoms Characteristic of Heart Failure Among CKD Patients Without Diagnosed Heart Failure. Journal of Cardiac Failure, 2011, 17, 17-23.	1.7	28
63	Angiotensin II induced catabolic effect and muscle atrophy are redox dependent. Biochemical and Biophysical Research Communications, 2011, 409, 217-221.	2.1	82
64	Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2011, 50, 928-938.	1.9	69
65	The effect of nebivolol versus metoprolol succinate extended release on asymmetric dimethylarginine in hypertension. Journal of the American Society of Hypertension, 2011, 5, 161-165.	2.3	26
66	Angiotensin II, Oxidative Stress and Skeletal Muscle Wasting. American Journal of the Medical Sciences, 2011, 342, 143-147.	1.1	113
67	Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation. Journal of Cellular Physiology, 2011, 226, 3303-3315.	4.1	67
68	Low circulating insulin-like growth factor I increases atherosclerosis in ApoE-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1898-H1906.	3.2	50
69	Angiotensin II Upregulates Protein Phosphatase 2Cα and Inhibits AMP-Activated Protein Kinase Signaling and Energy Balance Leading to Skeletal Muscle Wasting. Hypertension, 2011, 58, 643-649.	2.7	58
70	WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling, 2010, 22, 809-820.	3.6	111
71	Thiazolidinediones Up-regulate Insulin-like Growth Factor-1 Receptor via a Peroxisome Proliferator-activated Receptor γ-Independent Pathway. Journal of Biological Chemistry, 2010, 285, 36361-36368.	3.4	23
72	Smooth Muscle Cell–Specific Insulin-Like Growth Factor-1 Overexpression in <i>Apoe</i> ^{â°'/â°'} Mice Does Not Alter Atherosclerotic Plaque Burden but Increases Features of Plaque Stability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1916-1924.	2.4	62

#	Article	IF	CITATIONS
73	Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-1®B activation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1242-H1254.	3.2	69
74	IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1565-H1570.	3.2	94
75	IGF-1, oxidative stress and atheroprotection. Trends in Endocrinology and Metabolism, 2010, 21, 245-254.	7.1	90
76	EMMPRIN activates multiple transcription factors in cardiomyocytes, and induces interleukin-18 expression via Rac1-dependent PI3K/Akt/IKK/NF-κB andMKK7/JNK/AP-1 signaling. Journal of Molecular and Cellular Cardiology, 2010, 49, 655-663.	1.9	88
77	Calcific Constrictive Pericarditis With Refractory Hypokalemia in a Patient With Gitelman's Syndrome. American Journal of the Medical Sciences, 2009, 337, 74-76.	1.1	3
78	Growth Hormone-Releasing Peptide-2 Suppresses Vascular Oxidative Stress in ApoEâ^'/â^' Mice But Does Not Reduce Atherosclerosis. Endocrinology, 2009, 150, 5478-5487.	2.8	15
79	IL-6 and Serum Amyloid A Synergy Mediates Angiotensin Il–Induced Muscle Wasting. Journal of the American Society of Nephrology: JASN, 2009, 20, 604-612.	6.1	208
80	Insulin glargine reduces carotid intimal hyperplasia after balloon catheter injury in Zucker fatty rats possibly by reduction in oxidative stress. Molecular and Cellular Biochemistry, 2009, 330, 1-8.	3.1	12
81	Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6. Cell Stem Cell, 2009, 5, 54-63.	11.1	1,607
82	Effect of Hurricane Katrina on the Incidence of Acute Coronary Syndrome at a Primary Angioplasty Center in New Orleans. Disaster Medicine and Public Health Preparedness, 2009, 3, 144-150.	1.3	76
83	Low Serum Insulinâ€Like Growth Factor 1 Potentiates Atherosclerotic Plaque Development in APOEâ€∤― Mice: Potential Mechanism of Accelerated Atherosclerosis in Aging. FASEB Journal, 2009, 23, 357.9.	0.5	0
84	Insulin-Like Growth Factors, Cardiovascular Risk Factors, and Cardiovascular Disease. , 2009, , 239-245.		0
85	The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1684-H1689.	3.2	19
86	Enhancing Repair of the Mammalian Heart. Circulation Research, 2007, 100, 1732-1740.	4.5	101
87	Angiotensin II as candidate of cardiac cachexia. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 220-224.	2.5	40
88	Predictors of Left Ventricular Dilatation in Young Adults (from the Bogalusa Heart Study). American Journal of Cardiology, 2006, 98, 1234-1237.	1.6	33
89	Angiotensin II Stimulates Transcription of Insulin-Like Growth Factor I Receptor in Vascular Smooth Muscle Cells: Role of Nuclear Factor-l⁰B. Endocrinology, 2006, 147, 1256-1263.	2.8	32
90	Endothelial dysfunction: its role in hypertensive coronary disease. Current Opinion in Cardiology, 2005, 20, 270-274.	1.8	34

#	Article	IF	CITATIONS
91	51 PREDICTORS OF LEFT VENTRICULAR DILATATION IN YOUNG ADULTS: THE BOGALUSA HEART STUDY. Journal of Investigative Medicine, 2005, 53, S262.5-S262.	1.6	0
92	Expression, Regulation, and Function of IGF-1, IGF-1R, and IGF-1 Binding Proteins in Blood Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 435-444.	2.4	467
93	Nonsteroidal Anti-Inflammatory drugs and cardiovascular risk. Journal of the American College of Cardiology, 2004, 43, 519-525.	2.8	116
94	Technique and Imaging for Transthoracic Echocardiography of the Laboratory Pig. Echocardiography, 2004, 21, 439-442.	0.9	28
95	Estrogen regulates insulin-like growth factor 1, platelet-derived growth factor A and B, and their receptors in the vascular wall. Transplantation, 2004, 77, 35-42.	1.0	9
96	Mechanisms of Cardiac Hypertrophy and the Development of Heart Failure. , 2004, , 311-329.		0
97	Insulin-Like Growth Factor-1 Receptor Activation Inhibits Oxidized LDL-Induced Cytochrome C Release and Apoptosis via the Phosphatidylinositol 3 Kinase/Akt Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 2178-2184.	2.4	84
98	Tumor Necrosis Factor-α Regulates Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor Binding Protein-3 Expression in Vascular Smooth Muscle. Circulation, 2002, 105, 1220-1225.	1.6	92
99	Lipid Management Strategies for the Prevention of Adverse Cardiovascular Events. Cardiology, 2002, 2, 159-161.	0.3	0
100	Decreased Expression of Insulin-like Growth Factor-1 and Apoptosis of Vascular Smooth Muscle Cells in Human Atherosclerotic Plaque. Journal of Molecular and Cellular Cardiology, 2001, 33, 1777-1789.	1.9	91
101	Thrombin Regulates Insulin-Like Growth Factor-1 Receptor Transcription in Vascular Smooth Muscle. Circulation Research, 2001, 88, 1044-1052.	4.5	32
102	Endoluminal Beta-Radiation Therapy for the Prevention of Coronary Restenosis after Balloon Angioplasty. New England Journal of Medicine, 2001, 344, 243-249.	27.0	258
103	Translation Initiation of the Insulin-like Growth Factor I Receptor mRNA Is Mediated by an Internal Ribosome Entry Site. Journal of Biological Chemistry, 2001, 276, 5668-5675.	3.4	57
104	Angiotensin II Induces Skeletal Muscle Wasting through Enhanced Protein Degradation and Down-Regulates Autocrine Insulin-Like Growth Factor I*. Endocrinology, 2001, 142, 1489-1496.	2.8	179
105	Differential effects of low density lipoproteins on IGF-1 and IGF-1R expression in vascular smooth muscle cells. Journal of Biological Chemistry, 2000, 275, 26864-9.	3.4	16
106	In-vivo measurements of wall shear stress in human coronary arteries. Coronary Artery Disease, 2000, 11, 495-502.	0.7	92
107	Estradiol Decreases IGF-1 and IGF-1 Receptor Expression in Rat Aortic Smooth Muscle Cells. Journal of Biological Chemistry, 2000, 275, 38921-38928.	3.4	51
108	Oxidized Low-Density Lipoprotein Is Associated With Apoptosis of Vascular Smooth Muscle Cells in Human Atherosclerotic Plaques. Circulation, 2000, 102, 2680-2686.	1.6	115

#	Article	IF	CITATIONS
109	Insulin-Like Growth Factor Binding Protein-4 Expression Is Decreased by Angiotensin II and Thrombin in Rat Aortic Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 370-376.	2.4	18
110	The growth hormone and insulin-like growth factor 1 axis in heart failure. Annales D'Endocrinologie, 2000, 61, 22-6.	1.4	11
111	Angiotensin II Activation of Insulin-Like Growth Factor 1 Receptor Transcription Is Mediated by a Tyrosine Kinase–Dependent Redox-Sensitive Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2119-2126.	2.4	60
112	Distinct and Common Pathways in the Regulation of Insulin-like Growth Factor-1 Receptor Gene Expression by Angiotensin II and Basic Fibroblast Growth Factor. Journal of Biological Chemistry, 1999, 274, 3522-3530.	3.4	46
113	Growth factors and receptors in allograft arteriosclerosis. Transplantation Proceedings, 1999, 31, 111-114.	0.6	9
114	Growth factors and vascular smooth muscle cell growth responses. European Heart Journal, 1998, 19 Suppl G, G18-22.	2.2	8
115	Angiotensin II Stimulates Tyrosine Phosphorylation and Activation of Insulin Receptor Substrate 1 and Protein-tyrosine Phosphatase 1D in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 12373-12379.	3.4	54
116	Reactive oxygen species stimulate insulin-like growth factor I synthesis in vascular smooth muscle cells. Cardiovascular Research, 1997, 33, 216-222.	3.8	58
117	Estrogen Effects on Insulin-Like Growth Factor-I (IGF-I)–Induced Cell Proliferation and IGF-I Expression in Native and Allograft Vessels. Circulation, 1997, 96, 927-933.	1.6	36
118	G-Protein and Tyrosine Kinase Receptor Cross-Talk in Rat Aortic Smooth Muscle Cells: Thrombin- and Angiotensin II-Induced Tyrosine Phosphorylation of Insulin Receptor Substrate-1 and Insulin-like Growth Factor 1 Receptor. Biochemical and Biophysical Research Communications, 1996, 218, 934-939.	2.1	59
119	Insulin-like Growth Factor 1 Binding Protein 3 Synthesis by Aortic Endothelial Cells Is a Function of Cell Density. Biochemical and Biophysical Research Communications, 1996, 222, 478-482.	2.1	12
120	Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism Journal of Clinical Investigation, 1996, 97, 2509-2516.	8.2	228
121	Angiotensin II Modulation of Insulin-like Growth Factor I Expression in the Cardiovascular System. Trends in Cardiovascular Medicine, 1996, 6, 187-193.	4.9	9
122	Effect of Uniaxial, Cyclic Stretch on the Morphology of Monocytes/Macrophages in Culture. Journal of Biomechanical Engineering, 1996, 118, 420-422.	1.3	27
123	Transcriptional regulation of the insulin-like growth factor-I receptor gene: evidence for protein kinase C-dependent and -independent pathways Endocrinology, 1996, 137, 1378-1384.	2.8	25
124	G-protein coupled and tyrosine kinase receptors: evidence that activation of the insulin-like growth factor I receptor is required for thrombin-induced mitogenesis of rat aortic smooth muscle cells Journal of Clinical Investigation, 1996, 97, 139-145.	8.2	70
125	Transcriptional regulation of the insulin-like growth factor-I receptor gene: evidence for protein kinase C-dependent and -independent pathways. Endocrinology, 1996, 137, 1378-1384.	2.8	9
126	Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovascular Research, 1995, 30, 825-834.	3.8	129

#	Article	IF	CITATIONS
127	Identification of two positive transcriptional elements within the 91-base pair promoter for mouse testis angiotensin converting enzyme (testis ACE). Genesis, 1995, 16, 201-209.	2.1	12
128	Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature, 1995, 375, 247-250.	27.8	710
129	Regulation of Vascular Smooth Muscle Cell Insulin-like Growth Factor I Receptors by Phosphorothioate Oligonucleotides. EFFECTS ON CELL GROWTH AND EVIDENCE THAT SENSE TARGETING AT THE ATG SITE INCREASES RECEPTOR EXPRESSION. Journal of Biological Chemistry, 1995, 270, 14383-14388.	3.4	59
130	Thrombin Stimulates Phosphorylation of Insulin-like Growth Factor-1 Receptor, Insulin Receptor Substrate-1, and Phospholipase C-γ1 in Rat Aortic Smooth Muscle Cells. Journal of Biological Chemistry, 1995, 270, 27871-27875.	3.4	128
131	Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovascular Research, 1995, 30, 825-834.	3.8	69
132	Inhibition of Vascular Smooth Muscle Cell Growth Through Antisense Transcription of a Rat Insulin-Like Growth Factor I Receptor cDNA. Circulation Research, 1995, 76, 963-972.	4.5	63
133	Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovascular Research, 1995, 30, 825-34.	3.8	57
134	Hypertension increases insulin-like growth factor binding protein-4 mRNA levels in rat aorta Hypertension, 1994, 24, 679-685.	2.7	18
135	The Angiotensin II AT1 Receptor Is Tyrosine and Serine Phosphorylated and can Serve as a Substrate for the SRC Family of Tyrosine Kinases. Biochemical and Biophysical Research Communications, 1994, 200, 260-267.	2.1	76
136	Epitope Mapping of the α-Chain of the Insulin-like Growth Factor I Receptor using Antipeptide Antibodies. Journal of Molecular and Cellular Cardiology, 1994, 26, 1659-1673.	1.9	3
137	Fibroblast Growth Factor Regulates Insulin-like Growth Factor-Binding Protein Production by Vascular Smooth Muscle Cells. American Journal of the Medical Sciences, 1994, 307, 77-81.	1.1	18
138	Sequence of a cDNA encoding dog insulin-like growth factor I. Gene, 1993, 130, 305-306.	2.2	24
139	Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters Circulation Research, 1993, 72, 1285-1292.	4.5	51
140	Abdominal coarctation increases insulin-like growth factor I mRNA levels in rat aorta Circulation Research, 1993, 72, 271-277.	4.5	66
141	Induction of Cardiac Insulin-Like Growth Factor I Gene Expression in Pressure Overload Hypertrophy. American Journal of the Medical Sciences, 1993, 306, 69-74.	1.1	54
142	Angiotensin II regulates insulin-like growth factor I gene expression in vascular smooth muscle cells. Journal of Biological Chemistry, 1993, 268, 16866-16870.	3.4	120
143	Angiotensin II regulates insulin-like growth factor I gene expression in vascular smooth muscle cells. Journal of Biological Chemistry, 1993, 268, 16866-70.	3.4	97
144	Update on calcium antagonists. Heart Disease and Stroke: A Journal for Primary Care Physicians, 1992, 1, 366-71.	0.0	0

#	Article	IF	CITATIONS
145	Regulation of insulin-like growth factor I messenger RNA levels in vascular smooth muscle cells Hypertension, 1991, 18, 742-747.	2.7	111
146	Insulin-like growth factor I gene expression in vascular cells Hypertension, 1991, 17, 693-699.	2.7	81
147	SECONDARY SIGNALLING MECHANISMS IN ANGIOTENSIN II-STIMULATED VASCULAR SMOOTH MUSCLE CELLS. Clinical and Experimental Pharmacology and Physiology, 1988, 15, 105-112.	1.9	26