Emilie Ringe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8973473/publications.pdf

Version: 2024-02-01

73 papers 8,949 citations

32 h-index 91884 69 g-index

73 all docs

73 docs citations

times ranked

73

15365 citing authors

#	Article	IF	CITATIONS
1	Compressive Hyperspectral Microscopy of Scattering and Fluorescence of Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 2614-2626.	3.1	4
2	Size Control in the Colloidal Synthesis of Plasmonic Magnesium Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 563-577.	3.1	17
3	Beyond Simple Crystal Systems: Identifying Twinning in Body-Centered Tetragonal Nanoparticles. Crystal Growth and Design, 2022, 22, 653-660.	3.0	2
4	Solvent effects on the kinetics of 4-nitrophenol reduction by NaBH ₄ in the presence of Ag and Au nanoparticles. Reaction Chemistry and Engineering, 2022, 7, 1728-1741.	3.7	10
5	Opportunities and Challenges for Alternative Nanoplasmonic Metals: Magnesium and Beyond. Journal of Physical Chemistry C, 2022, 126, 10630-10643.	3.1	13
6	Facet- and Gas-Dependent Reshaping of Au Nanoplates by Plasma Treatment. ACS Nano, 2021, 15, 9860-9870.	14.6	9
7	Approaches to modelling the shape of nanocrystals. Nano Convergence, 2021, 8, 26.	12.1	22
8	Improving the stability of plasmonic magnesium nanoparticles in aqueous media. Nanoscale, 2021, 13, 20649-20656.	5 . 6	8
9	Emerging Applications of Elemental 2D Materials. Advanced Materials, 2020, 32, e1904302.	21.0	336
10	On the identification of twinning in body-centred cubic nanoparticles. Nanoscale, 2020, 12, 22009-22013.	5.6	6
11	Nanoparticle-Induced Self-Assembly of Block Copolymers into Nanoporous Films at the Air–Water Interface. ACS Nano, 2020, 14, 12203-12209.	14.6	20
12	Magnetic Vortex States in Toroidal Iron Oxide Nanoparticles: Combining Micromagnetics with Tomography. Nano Letters, 2020, 20, 7405-7412.	9.1	13
13	Large-area ultrathin Te films with substrate-tunable orientation. Nanoscale, 2020, 12, 12613-12622.	5. 6	22
14	Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 15665-15679.	3.1	58
15	2D Materials: Emerging Applications of Elemental 2D Materials (Adv. Mater. 7/2020). Advanced Materials, 2020, 32, 2070052.	21.0	14
16	Singular charge fluctuations at a magnetic quantum critical point. Science, 2020, 367, 285-288.	12.6	55
17	Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles. ACS Nano, 2020, 14, 5968-5980.	14.6	32
18	Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nature Photonics, 2020, 14, 123-128.	31.4	93

#	Article	IF	CITATIONS
19	Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33442-33451.	8.0	11
20	Wulff-Based Approach to Modeling the Plasmonic Response of Single Crystal, Twinned, and Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 25501-25508.	3.1	19
21	To sink, swim, twin, or nucleate: A critical appraisal of crystal aggregation processes. Geology, 2019, 47, 948-952.	4.4	19
22	Enhanced control of plasmonic properties of silver–gold hollow nanoparticles <i>via</i> a reduction-assisted galvanic replacement approach. RSC Advances, 2019, 9, 389-396.	3.6	14
23	Low Contact Barrier in 2H/1T′ MoTe ₂ In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12777-12785.	8.0	70
24	Decoration of plasmonic Mg nanoparticles by partial galvanic replacement. Journal of Chemical Physics, 2019, 151, 244708.	3.0	18
25	Polytypism in ultrathin tellurium. 2D Materials, 2019, 6, 015013.	4.4	68
26	Exploring Scientific Ideas in Informal Settings: Activities for Individuals with Visual Impairments. Journal of Chemical Education, 2018, 95, 593-597.	2.3	2
27	Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale, 2018, 10, 4267-4275.	5.6	40
28	Controllably Hollow AgAu Nanoparticles via Nonaqueous, Reduction Agentâ€Assisted Galvanic Replacement. Particle and Particle Systems Characterization, 2018, 35, 1700381.	2.3	5
29	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	19.5	369
30	Environmental Symmetry Breaking Promotes Plasmon Mode Splitting in Gold Nanotriangles. Journal of Physical Chemistry C, 2018, 122, 13259-13266.	3.1	30
31	Micro-Extinction Spectroscopy (MExS): a versatile optical characterization technique. Advanced Structural and Chemical Imaging, 2018, 4, .	4.0	16
32	In Situ Optical Tracking of Electroablation in Two-Dimensional Transition-Metal Dichalcogenides. ACS Applied Materials & Dichalcogenides. ACS Applied Materials	8.0	7
33	A room-temperature mid-infrared photodetector for on-chip molecular vibrational spectroscopy. Applied Physics Letters, $2018,113,.$	3.3	16
34	Magnesium Nanoparticle Plasmonics. Nano Letters, 2018, 18, 3752-3758.	9.1	91
35	Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites. ACS Applied Nano Materials, 2018, 1, 2421-2429.	5.0	20
36	Advances in the Synthesis and Longâ€Term Protection of Zeroâ€Valent Iron Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800120.	2.3	12

#	Article	IF	Citations
37	Gold Speciation and Co-reduction Control the Morphology of AgAu Nanoshells in Formaldehyde-Assisted Galvanic Replacement. Journal of Physical Chemistry C, 2018, 122, 18168-18176.	3.1	12
38	Impact of Non-Uniform Doping on the Plasmonic Properties of In2O3 Nanoparticles: A Study by Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2018, 24, 1684-1685.	0.4	1
39	Small morphology variations effects on plasmonic nanoparticle dimer hotspots. Journal of Materials Chemistry C, 2018, 6, 9607-9614.	5.5	37
40	Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals. Nano Letters, 2017, 17, 2611-2620.	9.1	94
41	Optimization of Spectral and Spatial Conditions to Improve Super-Resolution Imaging of Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 299-306.	4.6	21
42	Tunable and Linker Free Nanogaps in Core–Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS. ACS Applied Materials & Literfaces, 2017, 9, 37597-37605.	8.0	52
43	Transition-Metal Decorated Aluminum Nanocrystals. ACS Nano, 2017, 11, 10281-10288.	14.6	76
44	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano, 2017, 11, 6930-6941.	14.6	435
45	Observation and Analysis of an Electrically Active Layer at the Core-Shell Interface of a GaN Nanowire by Advanced Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1406-1407.	0.4	0
46	Tuning the Resonance Frequency of Surface Plasmons Localized in Au-Ag Bimetallic Hollow Nanorods In-situ in a Transmission Electron Microscope. Microscopy and Microanalysis, 2016, 22, 990-991.	0.4	0
47	Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms. Journal of Physical Chemistry C, 2016, 120, 20843-20851.	3.1	27
48	Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods. Nano Letters, 2016, 16, 6939-6945.	9.1	20
49	Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays. Scientific Reports, 2016, 6, 23159.	3.3	34
50	Heterometallic antennaâ^'reactor complexes for photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8916-8920.	7.1	381
51	Ultrasensitive Plasmonic Platform for Label-Free Detection of Membrane-Associated Species. Analytical Chemistry, 2016, 88, 7968-7974.	6.5	23
52	Solid–Liquid Self-Adaptive Polymeric Composite. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2142-2147.	8.0	6
53	Three-dimensional Surface Charge Reconstructions of Surface Plasmon Modes of Silver Right Bipyramids. Microscopy and Microanalysis, 2015, 21, 2225-2226.	0.4	0
54	Resonances of nanoparticles with poor plasmonic metal tips. Scientific Reports, 2015, 5, 17431.	3.3	42

#	Article	IF	CITATIONS
55	Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes. AIP Advances, 2015, 5, .	1.3	20
56	From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Science Advances, 2015, 1, e1500988.	10.3	146
57	Aluminum Nanocrystals. Nano Letters, 2015, 15, 2751-2755.	9.1	169
58	Segregation in bimetallic nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 27940-27951.	2.8	75
59	Eigenmode Tomography of Surface Charge Oscillations of Plasmonic Nanoparticles by Electron Energy Loss Spectroscopy. ACS Photonics, 2015, 2, 1628-1635.	6.6	51
60	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.	14.6	2,069
61	Nanocrystalline materials: recent advances in crystallographic characterization techniques. IUCrJ, 2014, 1, 530-539.	2.2	21
62	Single nanoparticle plasmonics. Physical Chemistry Chemical Physics, 2013, 15, 4110.	2.8	172
63	Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy. Nanoscale, 2013, 5, 5765.	5.6	49
64	Kinetic and Thermodynamic Modified Wulff Constructions for Twinned Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 15859-15870.	3.1	113
65	Correlating the structure and localized surface plasmon resonance of single silver right bipyramids. Nanotechnology, 2012, 23, 444005.	2.6	51
66	Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 1479-1483.	4.6	191
67	SERS: Materials, applications, and the future. Materials Today, 2012, 15, 16-25.	14.2	1,914
68	Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 9291-9305.	3.1	217
69	Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues: Theory and Experiment. Journal of the American Chemical Society, 2011, 133, 4115-4122.	13.7	390
70	Wulff Construction for Alloy Nanoparticles. Nano Letters, 2011, 11, 3399-3403.	9.1	160
71	Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. Journal of Physical Chemistry C, 2010, 114, 12511-12516.	3.1	314
72	Partial Cu occupancy in uranium copper diantimonide, UCu0.60(4)Sb2. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, i76-i78.	0.4	4

ARTICLE IF CITATIONS

73 Single nanoparticle plasmonics., 0, .

L