
Shin-Ichiro Imai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8972847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403, 795-800.	27.8	3,142
2	hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase. Cell, 2001, 107, 149-159.	28.9	2,429
3	Negative Control of p53 by Sir2α Promotes Cell Survival under Stress. Cell, 2001, 107, 137-148.	28.9	2,014
4	Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice. Cell Metabolism, 2011, 14, 528-536.	16.2	1,037
5	Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD ⁺ Biosynthesis. Science, 2009, 324, 651-654.	12.6	992
6	NAD+ and sirtuins in aging and disease. Trends in Cell Biology, 2014, 24, 464-471.	7.9	988
7	The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells. Journal of Biological Chemistry, 2004, 279, 50754-50763.	3.4	831
8	Nampt/PBEF/Visfatin Regulates Insulin Secretion in β Cells as a Systemic NAD Biosynthetic Enzyme. Cell Metabolism, 2007, 6, 363-375.	16.2	785
9	Sirt1 Extends Life Span and Delays Aging in Mice through the Regulation of Nk2 Homeobox 1 in the DMH and LH. Cell Metabolism, 2013, 18, 416-430.	16.2	621
10	NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metabolism, 2018, 27, 513-528.	16.2	605
11	Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metabolism, 2005, 2, 105-117.	16.2	575
12	Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metabolism, 2016, 24, 795-806.	16.2	552
13	The dynamic regulation of NAD metabolism in mitochondria. Trends in Endocrinology and Metabolism, 2012, 23, 420-428.	7.1	417
14	Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends in Pharmacological Sciences, 2010, 31, 212-220.	8.7	393
15	Poly(ADP-ribose) Polymerase-1-dependent Cardiac Myocyte Cell Death during Heart Failure Is Mediated by NAD+ Depletion and Reduced Sir2α Deacetylase Activity. Journal of Biological Chemistry, 2005, 280, 43121-43130.	3.4	358
16	Nampt: linking NAD biology, metabolism and cancer. Trends in Endocrinology and Metabolism, 2009, 20, 130-138.	7.1	347
17	Resveratrol Supplementation Does Not Improve Metabolic Function in Nonobese Women with Normal Glucose Tolerance. Cell Metabolism, 2012, 16, 658-664.	16.2	336
18	It takes two to tango: NAD+ and sirtuins in aging/longevity control. Npj Aging and Mechanisms of Disease, 2016, 2, 16017.	4.5	299

SHIN-ICHIRO IMAI

#	Article	IF	CITATIONS
19	Silent Information Regulator 2α, a Longevity Factor and Class III Histone Deacetylase, Is an Essential Endogenous Apoptosis Inhibitor in Cardiac Myocytes. Circulation Research, 2004, 95, 971-980.	4.5	292
20	Ageâ€associated loss of Sirt1â€mediated enhancement of glucoseâ€stimulated insulin secretion in beta cellâ€specific Sirt1â€overexpressing (BESTO) mice. Aging Cell, 2008, 7, 78-88.	6.7	283
21	Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell, 2016, 15, 522-530.	6.7	280
22	Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nature Structural and Molecular Biology, 2006, 13, 661-662.	8.2	247
23	The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Current Opinion in Gastroenterology, 2007, 23, 164-170.	2.3	240
24	Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metabolism, 2019, 30, 329-342.e5.	16.2	239
25	SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. Journal of Neuroscience, 2010, 30, 10220-10232.	3.6	217
26	Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science, 2021, 372, 1224-1229.	12.6	192
27	Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO Journal, 2014, 33, 1321-40.	7.8	191
28	Nicotinamide Phosphoribosyltransferase (Nampt): A Link Between NAD Biology, Metabolism, and Diseases. Current Pharmaceutical Design, 2009, 15, 20-28.	1.9	188
29	Slc12a8 is a nicotinamide mononucleotide transporter. Nature Metabolism, 2019, 1, 47-57.	11.9	183
30	The NAD World: A New Systemic Regulatory Network for Metabolism and Aging—Sirt1, Systemic NAD Biosynthesis, and Their Importance. Cell Biochemistry and Biophysics, 2009, 53, 65-74.	1.8	176
31	Extracellular Nampt Promotes Macrophage Survival via a Nonenzymatic Interleukin-6/STAT3 Signaling Mechanism. Journal of Biological Chemistry, 2008, 283, 34833-34843.	3.4	174
32	SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice. Cell Metabolism, 2015, 21, 706-717.	16.2	172
33	NAMPT-Mediated NAD+ Biosynthesis Is Essential for Vision In Mice. Cell Reports, 2016, 17, 69-85.	6.4	150
34	NAMPT-Mediated NAD + Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice. Cell Reports, 2016, 16, 1851-1860.	6.4	146
35	The brain, sirtuins, and ageing. Nature Reviews Neuroscience, 2017, 18, 362-374.	10.2	138
36	NAD+ biosynthesis, aging, and disease. F1000Research, 2018, 7, 132.	1.6	135

SHIN-ICHIRO IMAI

#	Article	IF	CITATIONS
37	Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine Journal, 2020, 67, 153-160.	1.6	114
38	"Clocks―in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1584-1590.	2.3	109
39	Dissociation of Oct-1 from the Nuclear Peripheral Structure Induces the Cellular Aging-associated Collagenase Gene Expression. Molecular Biology of the Cell, 1997, 8, 2407-2419.	2.1	94
40	Dissecting systemic control of metabolism and aging in the NAD World: The importance of SIRT1 and NAMPTâ€mediated NAD biosynthesis. FEBS Letters, 2011, 585, 1657-1662.	2.8	94
41	A possibility of nutriceuticals as an anti-aging intervention: Activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacological Research, 2010, 62, 42-47.	7.1	78
42	Accurate Measurement of Nicotinamide Adenine Dinucleotide (NAD+) with High-Performance Liquid Chromatography. Methods in Molecular Biology, 2013, 1077, 203-215.	0.9	74
43	The NAD World 2.0: the importance of the inter-tissue communication mediated by NAMPT/NAD+/SIRT1 in mammalian aging and longevity control. Npj Systems Biology and Applications, 2016, 2, 16018.	3.0	66
44	Therapeutic potential of SIRT1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes. Frontiers in Bioscience - Landmark, 2009, Volume, 2983.	3.0	64
45	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63
46	The N-Terminal Domain of SIRT1 Is a Positive Regulator of Endogenous SIRT1-Dependent Deacetylation and Transcriptional Outputs. Cell Reports, 2015, 10, 1665-1673.	6.4	56
47	Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nature Communications, 2014, 5, 4211.	12.8	53
48	Expression of Nampt in Hippocampal and Cortical Excitatory Neurons Is Critical for Cognitive Function. Journal of Neuroscience, 2014, 34, 5800-5815.	3.6	50
49	Diurnal Variation in Insulin Sensitivity of Glucose Metabolism Is Associated With Diurnal Variations in Whole-Body and Cellular Fatty Acid Metabolism in Metabolically Normal Women. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1666-E1670.	3.6	49
50	SIRT1 and caloric restriction: an insight into possible trade-offs between robustness and frailty. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 350-356.	2.5	46
51	Expression of a MADS box gene, MEF2D, in neurons of the mouse central nervous system: implication of its binary function in myogenic and neurogenic cell lineages. Neuroscience Letters, 1995, 200, 117-120.	2.1	41
52	SSâ€31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging Cell, 2020, 19, e13213.	6.7	38
53	From heterochromatin islands to the NAD World: A hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 997-1004.	2.4	35
54	Hypothalamic Sirt1 protects terminal Schwann cells and neuromuscular junctions from ageâ€related morphological changes. Aging Cell, 2018, 17, e12776.	6.7	35

#	Article	IF	CITATIONS
55	Unconventional Secretion of Adipocyte Fatty Acid Binding Protein 4 Is Mediated By Autophagic Proteins in a Sirtuin-1–Dependent Manner. Diabetes, 2019, 68, 1767-1777.	0.6	32
56	Hypothalamic Sirt1 in aging. Aging, 2014, 6, 1-2.	3.1	27
57	Transposon-mediated insertional mutagenesis of the D-alanyl-lipoteichoic acid (dlt) operon raises methicillin resistance in Staphylococcus aureus. Research in Microbiology, 2000, 151, 823-829.	2.1	26
58	Deficiency of <scp>P</scp> rdm13, a dorsomedial hypothalamusâ€enriched gene, mimics ageâ€associated changes in sleep quality and adiposity. Aging Cell, 2015, 14, 209-218.	6.7	25
59	Mitochondrial SIRT3: A New Potential Therapeutic Target for Metabolic Syndrome. Molecular Cell, 2011, 44, 170-171.	9.7	23
60	Loss of collagenase gene expression in immortalized clones of SV40 T antigen-transformed human diploid fibroblasts. Biochemical and Biophysical Research Communications, 1992, 189, 148-153.	2.1	21
61	A nutrientâ€sensitive interaction between Sirt1 and HNFâ€1α regulates <i>Crp</i> expression. Aging Cell, 2011, 10, 305-317.	6.7	21
62	Induction of mcl1/EAT, Bcl-2 Related Gene, by Retinoic Acid or Heat Shock in the Human Embryonal Carcinoma Cells, NCR-G3 Cell Structure and Function, 1996, 21, 143-150.	1.1	21
63	Is Sirt1 a miracle bullet for longevity?. Aging Cell, 2007, 6, 735-737.	6.7	17
64	The two-process model of cellular aging. Experimental Gerontology, 1998, 33, 393-419.	2.8	15
65	Friends and foes: Extracellular vesicles in aging and rejuvenation. FASEB BioAdvances, 2021, 3, 787-801.	2.4	15
66	Escape from in vitro aging in SV40 large T antigen-transformed human diploid cells: A key event responsible for immortalization occurs during crisis. Mechanisms of Ageing and Development, 1993, 69, 149-158.	4.6	11
67	Nampt is required for long-term depression and the function of GluN2B subunit-containing NMDA receptors. Brain Research Bulletin, 2015, 119, 41-51.	3.0	10
68	Reply to: Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nature Metabolism, 2019, 1, 662-665.	11.9	10
69	Sirt1 as a key regulator orchestrating the response to caloric restriction. Drug Discovery Today Disease Mechanisms, 2006, 3, 11-17.	0.8	9
70	Age-related disruption of the proteome and acetylome in mouse hearts is associated with loss of function and attenuated by elamipretide (SS-31) and nicotinamide mononucleotide (NMN) treatment. GeroScience, 2022, 44, 1621-1639.	4.6	8
71	A Clock Ticks in Pancreatic β Cells. Cell Metabolism, 2010, 12, 107-108.	16.2	7
72	SIRT1 mediates hypoxic postconditioning- and resveratrol-induced protection against functional connectivity deficits after subarachnoid hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1210-1223.	4.3	7

Shin-Ichiro Imai

#	Article	IF	CITATIONS
73	PCCX1, a Novel DNA-Binding Protein with PHD Finger and CXXC Domain, Is Regulated by Proteolysis. Biochemical and Biophysical Research Communications, 2000, 271, 305-310.	2.1	5
74	NAD+ oscillation and hypothalamic neuronal functions. Faculty Reviews, 2021, 10, 42.	3.9	5
75	Toward Productive Aging: SIRT1, Systemic NAD Biosynthesis, and the NAD World. Cornea, 2010, 29, S7-S12.	1.7	1
76	Unconventional Secretion of Adipocyte Fatty Acid Binding Protein (FABP4) by Adipocytes. FASEB Journal, 2018, 32, 814.11.	0.5	1
77	The 2021 FASEB science research conference on NAD metabolism and signaling. Aging, 2021, 13, 24924-24930.	3.1	1
78	Message from the new Co-Editor-in-Chief. Npj Aging and Mechanisms of Disease, 2017, 3, 3.	4.5	0
79	Regulation of Sirtuins by Systemic NAD + Biosynthesis. , 2018, , 7-25.		0