Kosuke Kuroda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8969238/publications.pdf

Version: 2024-02-01

		394421	501196
51	888	19	28
papers	citations	h-index	g-index
51	51	51	1206
31	31	31	1200
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Synthesis of a cellulose dissolving liquid zwitterion from general and low-cost reagents. Cellulose, 2022, 29, 3017-3024.	4.9	6
2	Characterization and application of carboxylate-type zwitterions synthesized by one-step. Journal of lonic Liquids, 2022, 2, 100027.	2.7	O
3	Cryostorage of unstable <i>N</i> -acetylglucosaminyltransferase-V by synthetic zwitterions. RSC Advances, 2022, 12, 11628-11631.	3.6	3
4	Reducing Cellulose Crystallinity with a Noncellulose-Dissolving Solid Zwitterion and Its Application for Biomass Pretreatment. ACS Sustainable Chemistry and Engineering, 2022, 10, 6919-6924.	6.7	2
5	Zwitterionic compounds are less ecotoxic than their analogous ionic liquids. Green Chemistry, 2021, 23, 3683-3692.	9.0	16
6	High loading of trimethylglycine promotes aqueous solubility of poorly water-soluble cisplatin. Scientific Reports, $2021,11,9770.$	3.3	4
7	Cellulose Preferentially Dissolved over Xylan in Ionic Liquids through Precise Anion Interaction Regulated by Bulky Cations. ACS Sustainable Chemistry and Engineering, 2021, 9, 8686-8691.	6.7	6
8	Essential Requirements of Biocompatible Cellulose Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 11825-11836.	6.7	17
9	Polar zwitterion/saccharide-based deep eutectic solvents for cellulose processing. Carbohydrate Polymers, 2021, 267, 118171.	10.2	13
10	Synthetic zwitterions as efficient non-permeable cryoprotectants. Communications Chemistry, 2021, 4,	4. 5	13
11	Direct preparation of gels from herbal medicinal plants by using a low toxicity liquid zwitterion. Polymer Journal, 2020, 52, 467-472.	2.7	2
12	Non-aqueous, zwitterionic solvent as an alternative for dimethyl sulfoxide in the life sciences. Communications Chemistry, 2020, 3, .	4.5	31
13	Biorefinery by using zwtitteionic type ionic liquids (zwitterionic liquids). Denki Kagaku, 2020, 88, 140-144.	0.0	0
14	Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution. New Journal of Chemistry, 2019, 43, 2057-2064.	2.8	11
15	Examining the unique retention behavior of volatile carboxylic acids in gas chromatography using zwitterionic liquid stationary phases. Journal of Chromatography A, 2019, 1603, 288-296.	3.7	7
16	Flame-retardant plant thermoplastics directly prepared by single ionic liquid substitution. Polymer Journal, 2019, 51, 781-789.	2.7	4
17	Zwitterionic polymeric ionic liquid-based sorbent coatings in solid phase microextraction for the determination of short chain free fatty acids. Talanta, 2019, 200, 415-423.	5.5	28
18	Hand-holding and releasing between the anion and cation to change their macroscopic behavior in water. Green Energy and Environment, 2019, 4, 127-130.	8.7	9

#	Article	IF	CITATIONS
19	A Polar Liquid Zwitterion Does Not Critically Destroy Cytochrome c at High Concentration: An Initial Comparative Study with a Polar Ionic Liquid. Australian Journal of Chemistry, 2019, 72, 139.	0.9	7
20	Design of Functional Imidazolium-Based Ionic Liquids for Biomass Processing. , 2019, , 1-7.		0
21	Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid. Journal of Bioscience and Bioengineering, 2018, 125, 717-722.	2.2	15
22	Structural analysis of zwitterionic liquids vs. homologous ionic liquids. Journal of Chemical Physics, 2018, 148, 193807.	3.0	24
23	Alkylated alkali lignin for compatibilizing agents of carbon fiber-reinforced plastics with polypropylene. Polymer Journal, 2018, 50, 281-284.	2.7	17
24	Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 2018, 119, 243-248.	5.2	22
25	Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: Application to esterified bagasse/polypropylene composites. Carbohydrate Polymers, 2018, 182, 8-14.	10.2	35
26	Pretreatment of bagasse with a minimum amount of cholinium ionic liquid for subsequent saccharification at high loading and co-fermentation for ethanol production. Chemical Engineering Journal, 2018, 334, 657-663.	12.7	43
27	Oxidative depolymerization potential of biorefinery lignin obtained by ionic liquid pretreatment and subsequent enzymatic saccharification of eucalyptus. Industrial Crops and Products, 2018, 111, 457-461.	5.2	23
28	CO ₂ -triggered fine tuning of electrical conductivity <i>via</i> tug-of-war between ions. New Journal of Chemistry, 2018, 42, 15528-15532.	2.8	4
29	Butylated lignin as a compatibilizing agent for polypropylene-based carbon fiber-reinforced plastics. Polymer Journal, 2018, 50, 997-1002.	2.7	9
30	Dimethyl sulfoxide enhances both the cellulose dissolution ability and biocompatibility of a carboxylate-type liquid zwitterion. New Journal of Chemistry, 2018, 42, 13225-13228.	2.8	31
31	Effective Dissolution of Biomass in Ionic Liquids by Irradiation of Non-Thermal Atmospheric Pressure Plasma. Australian Journal of Chemistry, 2017, 70, 731.	0.9	1
32	Efficient recovery of ionic liquid by electrodialysis in the acid hydrolysis process. Separation Science and Technology, 2017, 52, 1240-1245.	2.5	7
33	Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells. Organic Electronics, 2017, 48, 147-153.	2.6	30
34	Renaturation of Cytochrome <i>c</i> Dissolved in Polar Phosphonate-type Ionic Liquids Using Highly Polar Zwitterions. Chemistry Letters, 2017, 46, 870-872.	1.3	14
35	Ionic liquid pretreatment of bagasse improves mechanical property of bagasse/polypropylene composites. Industrial Crops and Products, 2017, 109, 158-162.	5.2	23
36	Efficient Hydrolysis of Polysaccharides in Bagasse by <i>in Situ</i> Synthesis of an Acidic Ionic Liquid after Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 708-713.	6.7	20

3

#	Article	IF	CITATIONS
37	Efficient Hydrolysis of Lignocellulose by Acidic Ionic Liquids under Low-Toxic Condition to Microorganisms. Catalysts, 2017, 7, 108.	3.5	4
38	Design of Wall-Destructive but Membrane-Compatible Solvents. Journal of the American Chemical Society, 2017, 139, 16052-16055.	13.7	57
39	Enhanced Hydrolysis of Lignocellulosic Biomass Assisted by a Combination of Acidic Ionic Liquids and Microwave Heating. Journal of Chemical Engineering of Japan, 2016, 49, 809-813.	0.6	14
40	Hydrolysis of Cellulose Using an Acidic and Hydrophobic Ionic Liquid and Subsequent Separation of Glucose Aqueous Solution from the Ionic Liquid and 5-(Hydroxymethyl)furfural. ACS Sustainable Chemistry and Engineering, 2016, 4, 3352-3356.	6.7	31
41	High performance ionic liquid chromatography. , 2016, , 83-103.		0
42	Application of a Non-thermal Atmospheric Pressure Plasma Jet to the Decomposition of Salicylic Acid to Inorganic Carbon. Chemistry Letters, 2015, 44, 1473-1475.	1.3	4
43	lonic liquids enable accurate chromatographic analysis of polyelectrolytes. Chemical Communications, 2015, 51, 10551-10553.	4.1	4
44	Effects of polarity, hydrophobicity, and density of ionic liquids on cellulose solubility. Physical Chemistry Chemical Physics, 2015, 17, 32276-32282.	2.8	49
45	Molecular weight distributions of polysaccharides and lignin extracted from plant biomass with a polar ionic liquid analysed without a derivatisation process. Analytical Methods, 2015, 7, 1719-1726.	2.7	17
46	Maintenance-Free Cellulose Solvents Based on Onium Hydroxides. ACS Sustainable Chemistry and Engineering, 2015, 3, 1771-1776.	6.7	52
47	Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings. Bioresource Technology, 2015, 189, 203-209.	9.6	37
48	¹ H NMR Evaluation of Polar and Nondeuterated Ionic Liquids for Selective Extraction of Cellulose and Xylan from Wheat Bran. ACS Sustainable Chemistry and Engineering, 2014, 2, 2204-2210.	6.7	33
49	1H NMR analysis of cellulose dissolved in non-deuterated ionic liquids. Cellulose, 2014, 21, 2199-2206.	4.9	35
50	Direct HPILC analysis of cellulose depolymerisation in ionic liquids. Analytical Methods, 2013, 5, 3172.	2.7	15
51	High performance "ionic liquid―chromatography. Chemical Communications, 2011, 47, 1994.	4.1	39