Helen J Ball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8968680/publications.pdf Version: 2024-02-01

HELENIRAL

#	Article	IF	CITATIONS
1	The kynurenine pathway and parasitic infections that affect CNS function. Neuropharmacology, 2017, 112, 389-398.	4.1	36
2	TIGR4 strain causes more severe disease than WU2 strain in a mouse model of Streptococcus pneumoniae meningitis: a common pathogenic role for interferon-γ. Microbes and Infection, 2017, 19, 413-421.	1.9	5
3	Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson's disease brain. Acta Neuropathologica, 2017, 134, 113-127.	7.7	78
4	Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain. Metallomics, 2017, 9, 1447-1455.	2.4	89
5	Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell, 2017, 16, 1195-1199.	6.7	100
6	Investigation of the Tissue Distribution and Physiological Roles of Indoleamine 2,3-Dioxygenase-2. International Journal of Tryptophan Research, 2017, 10, 117864691773509.	2.3	33
7	Synergistic induction of CXCL10 by interferon-gamma and lymphotoxin-alpha in astrocytes: Possible role in cerebral malaria. Cytokine, 2016, 78, 79-86.	3.2	13
8	Interferon-γ-Induced Nitric Oxide Synthase-2 Contributes to Blood/Brain Barrier Dysfunction and Acute Mortality in Experimental <i>Streptococcus pneumoniae</i> Meningitis. Journal of Interferon and Cytokine Research, 2016, 36, 86-99.	1.2	11
9	Low efficiency <scp>IDO</scp> 2 enzymes are conserved in lower vertebrates, whereas higher efficiency <scp>IDO</scp> 1 enzymes are dispensable. FEBS Journal, 2015, 282, 2735-2745.	4.7	47
10	An effective, low-cost method for achieving and maintaining hypoxia during cell culture studies. BioTechniques, 2015, 59, 223-229.	1.8	16
11	Mechanisms of murine cerebral malaria: Multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites. Science Advances, 2015, 1, e1500911.	10.3	25
12	Efficient tryptophanâ€catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 128-140.	1.3	26
13	IRGM3 Contributes to Immunopathology and Is Required for Differentiation of Antigen-Specific Effector CD8 ⁺ T Cells in Experimental Cerebral Malaria. Infection and Immunity, 2015, 83, 1406-1417.	2.2	8
14	The Kynurenine Pathway of Tryptophan Degradation is Activated During Osteoblastogenesis. Stem Cells, 2015, 33, 111-121.	3.2	61
15	Cerebral malaria: gamma-interferon redux. Frontiers in Cellular and Infection Microbiology, 2014, 4, 113.	3.9	55
16	Tryptophan-Catabolizing Enzymes ââ,¬â€œ Party of Three. Frontiers in Immunology, 2014, 5, 485.	4.8	153
17	Interleukin-18 deficiency and its long-term behavioural and cognitive impacts in a murine model of pneumococcal meningitis. Behavioural Brain Research, 2014, 263, 176-189.	2.2	13
18	The pro-inflammatory cytokine interferon-gamma is an important driver of neuropathology and behavioural sequelae in experimental pneumococcal meningitis. Brain, Behavior, and Immunity, 2014, 40, 252-268.	4.1	44

HELEN J BALL

#	Article	IF	CITATIONS
19	Brain endothelial cells increase the proliferation of Plasmodium falciparum through production of soluble factors. Experimental Parasitology, 2014, 145, 34-41.	1.2	2
20	Human indoleamine 2,3-dioxygenase-2 has substrate specificity and inhibition characteristics distinct from those of indoleamine 2,3-dioxygenase-1. Amino Acids, 2014, 46, 2155-2163.	2.7	101
21	A novel automated test battery reveals enduring behavioural alterations and cognitive impairments in survivors of murine pneumococcal meningitis. Brain, Behavior, and Immunity, 2014, 35, 107-124.	4.1	17
22	The kynurenine pathway contributes to long-term neuropsychological changes in experimental pneumococcal meningitis. Behavioural Brain Research, 2014, 270, 179-195.	2.2	10
23	The Fe-heme structure of met-indoleamine 2,3-dioxygenase-2 determined by X-ray absorption fine structure. Biochemical and Biophysical Research Communications, 2014, 450, 25-29.	2.1	4
24	Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids, 2013, 45, 1319-1329.	2.7	153
25	Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota. Fungal Genetics and Biology, 2013, 56, 98-106.	2.1	26
26	Improved spectrophotometric human interferon-gamma bioassay. Journal of Immunological Methods, 2013, 394, 115-120.	1.4	1
27	Endothelial Cells Potentiate Interferon-γ Production in a Novel Tripartite Culture Model of Human Cerebral Malaria. PLoS ONE, 2013, 8, e69521.	2.5	15
28	The evolution of three types of indoleamine 2,3 dioxygenases in fungi with distinct molecular and biochemical characteristics. Gene, 2012, 504, 64-74.	2.2	21
29	Inflammasome-Dependent IFN-Î ³ Drives Pathogenesis in <i>Streptococcus pneumoniae</i> Meningitis. Journal of Immunology, 2012, 189, 4970-4980.	0.8	65
30	Identification of selective inhibitors of indoleamine 2,3-dioxygenase 2. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7641-7646.	2.2	50
31	Molecular evolution of bacterial indoleamine 2,3-dioxygenase. Gene, 2011, 485, 22-31.	2.2	14
32	Reduced activity of the epithelial sodium channel in malaria-induced pulmonary oedema in mice. International Journal for Parasitology, 2011, 41, 81-88.	3.1	26
33	Coincident parasite and CD8 T cell sequestration is required for development of experimental cerebral malaria. International Journal for Parasitology, 2011, 41, 155-163.	3.1	55
34	Vascular expression, activity and function of indoleamine 2,3-dioxygenase-1 following cerebral ischaemia–reperfusion in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 471-481.	3.0	23
35	Molecular Evolution and Characterization of Fungal Indoleamine 2,3-Dioxygenases. Journal of Molecular Evolution, 2011, 72, 160-168.	1.8	19
36	Differential MicroRNA Expression in Experimental Cerebral and Noncerebral Malaria. Infection and Immunity, 2011, 79, 2379-2384.	2.2	51

HELEN J BALL

#	Article	IF	CITATIONS
37	Biochemical characteristics and inhibitor selectivity of mouse indoleamine 2,3-dioxygenase-2. Amino Acids, 2010, 39, 565-578.	2.7	61
38	Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Medicine, 2010, 16, 279-285.	30.7	418
39	1-l-methyltryptophan is a more effective inhibitor of vertebrate IDO2 enzymes than 1-d-methyltryptophan. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 157, 10-15.	1.6	52
40	Effect of indoleamine dioxygenase-1 deficiency and kynurenine pathway inhibition on murine cerebral malaria. International Journal for Parasitology, 2009, 39, 363-370.	3.1	22
41	Mouse and human indoleamine 2,3-dioxygenase display some distinct biochemical and structural properties. Amino Acids, 2009, 36, 99-106.	2.7	30
42	Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. International Journal of Biochemistry and Cell Biology, 2009, 41, 467-471.	2.8	233
43	Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 153, 137-144.	1.6	67
44	Chemokine Gene Expression during Fatal Murine Cerebral Malaria and Protection Due to CXCR3 Deficiency. Journal of Immunology, 2008, 180, 1217-1230.	0.8	139
45	Predominance of Interferon-Related Responses in the Brain during Murine Malaria, as Identified by Microarray Analysis. Infection and Immunity, 2008, 76, 1812-1824.	2.2	28
46	Both Functional LTβ Receptor and TNF Receptor 2 Are Required for the Development of Experimental Cerebral Malaria. PLoS ONE, 2008, 3, e2608.	2.5	44
47	Interferon-Î ³ synergises with tumour necrosis factor and lymphotoxin-α to enhance the mRNA and protein expression of adhesion molecules in mouse brain endothelial cells. Cytokine, 2007, 37, 84-91.	3.2	38
48	Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene, 2007, 396, 203-213.	2.2	400
49	Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. International Journal for Parasitology, 2006, 36, 485-496.	3.1	122
50	Immunopathogenesis of cerebral malaria. International Journal for Parasitology, 2006, 36, 569-582.	3.1	222
51	A role for Fas–Fas ligand interactions during the late-stage neuropathological processes of experimental cerebral malaria. Journal of Neuroimmunology, 2006, 173, 96-107.	2.3	35
52	Chemokines and Malaria Infection. Current Immunology Reviews, 2006, 2, 331-344.	1.2	7
53	Early Cytokine Production Is Associated with Protection from Murine Cerebral Malaria. Infection and Immunity, 2005, 73, 5645-5653.	2.2	101
54	Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria. FASEB Journal, 2004, 18, 499-510.	0.5	51

HELEN J BALL

#	Article	IF	CITATIONS
55	Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. International Journal for Parasitology, 2004, 34, 1309-1319.	3.1	76
56	Needle in a haystack: microdissecting the proteome of a tissue. Amino Acids, 2004, 27, 1-7.	2.7	14
57	Cyclooxygenaseâ€⊋ in the Pathogenesis of Murine Cerebral Malaria. Journal of Infectious Diseases, 2004, 189, 751-758.	4.0	45
58	Isolating vessels from the mouse brain for gene expression analysis using laser capture microdissection. Brain Research Protocols, 2002, 9, 206-213.	1.6	65
59	Prostaglandin E2inhibits calcium current in two subâ€populations of acutely isolated mouse trigeminal sensory neurons. Journal of Physiology, 2002, 539, 433-444.	2.9	35
60	The ETO Protein Disrupted in t(8;21)-Associated Acute Myeloid Leukemia Is a Corepressor for the Promyelocytic Leukemia Zinc Finger Protein. Molecular and Cellular Biology, 2000, 20, 2075-2086.	2.3	134
61	In-Depth Mutational Analysis of the Promyelocytic Leukemia Zinc Finger BTB/POZ Domain Reveals Motifs and Residues Required for Biological and Transcriptional Functions. Molecular and Cellular Biology, 2000, 20, 6550-6567.	2.3	167
62	A Novel BTB/POZ Transcriptional Repressor Protein Interacts With the Fanconi Anemia Group C Protein and PLZF. Blood, 1999, 94, 3737-3747.	1.4	129
63	The promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase. Nucleic Acids Research, 1999, 27, 4106-4113.	14.5	57
64	Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene, 1999, 18, 925-934.	5.9	177
65	A Novel BTB/POZ Transcriptional Repressor Protein Interacts With the Fanconi Anemia Group C Protein and PLZF. Blood, 1999, 94, 3737-3747.	1.4	9
66	Sequence-specific DNA Binding and Transcriptional Regulation by the Promyelocytic Leukemia Zinc Finger Protein. Journal of Biological Chemistry, 1997, 272, 22447-22455.	3.4	161
67	Overlapping Gene Structure of the Human Neuropeptide Y Receptor Subtypes Y1 and Y5 Suggests Coordinate Transcriptional Regulation. Genomics, 1997, 41, 315-319.	2.9	114
68	Multiple Promoters Regulate Tissue-specific Expression of the Human NPY-Y1 Receptor Gene. Journal of Biological Chemistry, 1995, 270, 27272-27276.	3.4	56
69	Assignment of the human neuropeptide Y gene to chromosome 7p15.1 by nonisotopic in situ hybridization. Genomics, 1995, 26, 163-164.	2.9	36
70	Cloned human neuropeptide Y receptor couples to two different second messenger systems Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5794-5798.	7.1	421