
Miguel Remacha Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8968365/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carboxy terminal modifications of the PO protein reveal alternative mechanisms of nuclear ribosomal stalk assembly. Nucleic Acids Research, 2013, 41, 8628-8636.	14.5	11
2	Ribosomal P0 Protein Domain Involved in Selectivity of Antifungal Sordarin Derivatives. Antimicrobial Agents and Chemotherapy, 2004, 48, 2930-2936.	3.2	21
3	Characterization of Sparsomycin Resistance in Streptomyces sparsogenes. Antimicrobial Agents and Chemotherapy, 2002, 46, 2914-2919.	3.2	2
4	Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components. Molecular Microbiology, 2002, 46, 719-792.	2.5	39
5	Asymmetric Interactions between the Acidic P1 and P2 Proteins in the Saccharomyces cerevisiae Ribosomal Stalk. Journal of Biological Chemistry, 2001, 276, 32474-32479.	3.4	47
6	Phosphorylation and N-terminal region of yeast ribosomal protein P1 mediate its degradation, which is prevented by protein P2. EMBO Journal, 2000, 19, 6075-6084.	7.8	63
7	The RNA Interacting Domain but Not the Protein Interacting Domain Is Highly Conserved in Ribosomal Protein PO. Journal of Biological Chemistry, 2000, 275, 2130-2136.	3.4	47
8	Ribosomal Stalk Protein Phosphorylating Activities in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2000, 375, 83-89.	3.0	9
9	Structural Differences betweenSaccharomyces cerevisiaeRibosomal Stalk Proteins P1 and P2 Support Their Functional Diversityâ€. Biochemistry, 2000, 39, 8935-8943.	2.5	22
10	Assembly ofSaccharomyces cerevisiaeRibosomal Stalk:Â Binding of P1 Proteins Is Required for the Interaction of P2 Proteinsâ€. Biochemistry, 2000, 39, 8929-8934.	2.5	48
11	Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. FEMS Microbiology Reviews, 1999, 23, 537-550.	8.6	39
12	Structure and function of the stalk, a putative regulatory element of the yeast ribosome. Role of stalk protein phosphorylation. Folia Microbiologica, 1999, 44, 153-163.	2.3	8
13	Disruption of sixSaccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Yeast, 1999, 15, 945-953.	1.7	24
14	Deletion of 24 open reading frames from chromosome XI from Saccharomyces cerevisiae and phenotypic analysis of the deletants. Gene, 1999, 233, 141-150.	2.2	7
15	Phosphorylation of Ribosomal Protein PO Is Not Essential for Ribosome Function but Can Affect Translation. Biochemistry, 1998, 37, 16620-16626.	2.5	45
16	The GTPase Center Protein L12 Is Required for Correct Ribosomal Stalk Assembly but Not for Saccharomyces cerevisiaeViability. Journal of Biological Chemistry, 1998, 273, 31956-31961.	3.4	51
17	Phosphorylation of the Acidic Ribosomal P Proteins inSaccharomyces cerevisiae: A Reappraisalâ€. Biochemistry, 1997, 36, 14439-14446.	2.5	65
18	The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature, 1997, 387, 75-78.	27.8	95

MIGUEL REMACHA MORENO

#	Article	IF	CITATIONS
19	The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature, 1997, 387, 93-98.	27.8	65
20	The Large Ribosomal Subunit Stalk as a Regulatory Element of the Eukaryotic Translational Machinery. Progress in Molecular Biology and Translational Science, 1996, 55, 157-193.	1.9	116
21	Functional domains of chlamydial histone H1-like protein. Biochemical Journal, 1996, 315, 481-486.	3.7	11
22	The sequence of a 17 933 bp segment of Saccharomyces cerevisiae chromosome XIV contains the RHO2, TOP2, MKT1 and END3 genes and five new open reading frames. , 1996, 12, 485-491.		6
23	Ribosomal Acidic Phosphoproteins P1 and P2 Are Not Required for Cell Viability but Regulate the Pattern of Protein Expression in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1995, 15, 4754-4762.	2.3	124
24	Heterologous expression of the highly conserved acidic ribosomal phosphoproteins from Dictyostelium discoideum in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1263, 45-52.	2.4	5
25	Chlamydia trachomatis RNA polymerase alpha subunit: sequence and structural analysis. Journal of Bacteriology, 1995, 177, 2594-2601.	2.2	19
26	Eukaryotic acidic phosphoproteins interact with the ribosome through their amino-terminal domain. Biochemistry, 1995, 34, 7941-7948.	2.5	34
27	Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochemistry and Cell Biology, 1995, 73, 959-968.	2.0	92
28	Cloning and characterization of a secY homolog from Chlamydia trachomatis. Molecular Genetics and Genomics, 1994, 243, 482-487.	2.4	6
29	Complete DNA sequence of yeast chromosome XI. Nature, 1994, 369, 371-378.	27.8	382
30	Effect of acidic ribosomal phosphoprotein mRNA 5'-untranslated region on gene expression and protein accumulation Journal of Biological Chemistry, 1994, 269, 3968-3975.	3.4	12
31	Effect of acidic ribosomal phosphoprotein mRNA 5'-untranslated region on gene expression and protein accumulation. Journal of Biological Chemistry, 1994, 269, 3968-75.	3.4	10
32	The complete sequence of a 15 820 bp segment ofSaccharomyces cerevisiae chromosome XI contains theUBI2 andMPL1 genes and three new open reading frames. Yeast, 1993, 9, 1349-1354.	1.7	8
33	The acidic phosphoproteins from Saccharomyces cerevisiae ribosomes. Amino terminal acetylation is a conserved difference between P1 and P2 proteins. Biochemistry, 1993, 32, 4231-4236.	2.5	27
34	The Acidic Ribosomal Proteins and the Control of Protein Synthesis in Yeast. , 1993, , 67-80.		9
35	The activity-controlling phosphorylation site is not the same in the four acidic ribosomal proteins from Saccharomyces cerevisiae Journal of Biological Chemistry, 1993, 268, 2451-2457.	3.4	14
36	The activity-controlling phosphorylation site is not the same in the four acidic ribosomal proteins from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1993, 268, 2451-7.	3.4	9

#	Article	IF	CITATIONS
37	The complete DNA sequence of yeast chromosome III. Nature, 1992, 357, 38-46.	27.8	924
38	Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis Journal of Biological Chemistry, 1992, 267, 12061-12067.	3.4	71
39	Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis. Journal of Biological Chemistry, 1992, 267, 12061-7.	3.4	55
40	Characterization of the yeast acidic ribosomal phosphoproteins using monoclonal antibodies. Proteins L44/L45 and L44' have different functional roles. FEBS Journal, 1991, 196, 407-414.	0.2	72
41	Disruption of single-copy genes encoding acidic ribosomal proteins in Saccharomyces cerevisiae Molecular and Cellular Biology, 1990, 10, 2182-2190.	2.3	45
42	Chromosome location of a family of genes encoding different acidic ribosomal proteins in Saccharomyces cerevisiae. Current Genetics, 1990, 17, 535-536.	1.7	6
43	The 26S rRNA binding ribosomal protein equivalent to bacterial protein L11 is encoded by unspliced duplicated genes in Saccharomyces cerevisiae. Nucleic Acids Research, 1990, 18, 4409-4416.	14.5	17
44	The acidic ribosomal proteins as regulators of the eukaryotic ribosomal activity. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1050, 51-55.	2.4	75
45	Disruption of single-copy genes encoding acidic ribosomal proteins in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1990, 10, 2182-2190.	2.3	10
46	Ribosomal protein interactions in yeast. Protein L15 forms a complex with the acidic proteins. FEBS Journal, 1988, 177, 531-537.	0.2	26
47	Independent genes coding for three acidic proteins of the large ribosomal subunit from Saccharomyces cerevisiae Journal of Biological Chemistry, 1988, 263, 9094-9101.	3.4	94
48	Independent genes coding for three acidic proteins of the large ribosomal subunit from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1988, 263, 9094-101.	3.4	82
49	Structure-activity relationships of sparsomycin and its analogs. Inhibition of peptide bond formation in cell-free systems and of L1210 and bacterial cell growth. Journal of Medicinal Chemistry, 1987, 30, 325-333.	6.4	34