Andrew E Pelling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8968062/publications.pdf

Version: 2024-02-01

66 papers

3,728 citations

30 h-index 58 g-index

94 all docs 94
docs citations

times ranked

94

5378 citing authors

#	Article	IF	CITATIONS
1	Homemade bread: Repurposing an ancient technology for in vitro tissue engineering. Biomaterials, 2022, 280, 121267.	11.4	15
2	Mechanosensitive osteogenesis on native cellulose scaffolds for bone tissue engineering. Journal of Biomechanics, 2022, 135, 111030.	2.1	3
3	Seasonal changes in membrane structure and excitability in retinal neurons of goldfish (<i>Carassius) Tj ETQq1</i>	1 0.78431 1.7	4 rgBT /Overlo
4	Mechanotransduction of Strain Regulates an Invasive Phenotype in Newly Transformed Epithelial Cells. Frontiers in Physics, 2021, 9, .	2.1	6
5	Time dependent stress relaxation and recovery in mechanically strained 3D microtissues. APL Bioengineering, 2020, 4, 036107.	6.2	10
6	Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF- \hat{l}^21 activation. Integrative Biology (United Kingdom), 2020, 12, 199-210.	1.3	15
7	Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Scientific Reports, 2020, 10, 7696.	3.3	49
8	Researcher engagement in policy deemed societally beneficial yet unrewarded. Frontiers in Ecology and the Environment, 2019, 17, 375-382.	4.0	17
9	Scaffolds for 3D Cell Culture and Cellular Agriculture Applications Derived From Non-animal Sources. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	70
10	Cellulose Biomaterials for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2019, 7, 45.	4.1	291
11	Time dependence of cellular responses to dynamic and complex strain fields. Integrative Biology (United Kingdom), 2019, 11, 4-15.	1.3	3
12	Customizing the Shape and Microenvironment Biochemistry of Biocompatible Macroscopic Plant-Derived Cellulose Scaffolds. ACS Biomaterials Science and Engineering, 2018, 4, 3726-3736.	5.2	69
13	A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomedical Microdevices, 2018, 20, 43.	2.8	18
14	Measuring mechanodynamics in an unsupported epithelial monolayer grown at an air–water interface. Molecular Biology of the Cell, 2017, 28, 111-119.	2.1	3
15	Cellular orientation is guided by strain gradients. Integrative Biology (United Kingdom), 2017, 9, 607-618.	1.3	27
16	The rotation of mouse myoblast nuclei is dependent on substrate elasticity. Cytoskeleton, 2017, 74, 184-194.	2.0	6
17	Rapid dynamics of cell-shape recovery in response to local deformations. Soft Matter, 2017, 13, 567-577.	2.7	3
18	Mechanical mismatch between Ras transformed and untransformed epithelial cells. Soft Matter, 2017, 13, 8483-8491.	2.7	15

#	Article	IF	CITATIONS
19	Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE, 2016, 11, e0157894.	2.5	164
20	Physical confinement signals regulate the organization of stem cells in three dimensions. Journal of the Royal Society Interface, 2016, 13, 20160613.	3.4	11
21	Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner. Scientific Reports, 2016, 6, 21300.	3.3	85
22	Re-purposing Life in an Anti-Disciplinary and Curiosity-Driven Context. Leonardo, 2015, 48, 274-275.	0.3	1
23	Simultaneous optical and mechanical probes to investigate complex cellular responses to physical cues. , 2015, , .		0
24	Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society Interface, 2015, 12, 20140970.	3.4	288
25	The effect of Young's modulus on the neuronal differentiation of mouse embryonic stem cells. Acta Biomaterialia, 2015, 25, 253-267.	8.3	44
26	Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture. PLoS ONE, 2014, 9, e97835.	2.5	162
27	Mechanical Cues Direct Focal Adhesion Dynamics. Progress in Molecular Biology and Translational Science, 2014, 126, 103-134.	1.7	19
28	Microtubules mediate changes in membrane cortical elasticity during contractile activation. Experimental Cell Research, 2014, 322, 21-29.	2.6	19
29	A microscale anisotropic biaxial cell stretching device for applications in mechanobiology. Biotechnology Letters, 2014, 36, 657-665.	2.2	43
30	A Novel Stretching Platform for Applications in Cell and Tissue Mechanobiology. Journal of Visualized Experiments, 2014, , .	0.3	5
31	Mechanical cues in cellular signalling and communication. Cell and Tissue Research, 2013, 352, 77-94.	2.9	68
32	Resiliency of the plasma membrane and actin cortex to largeâ€scale deformation. Cytoskeleton, 2013, 70, 494-514.	2.0	36
33	Three dimensional spatial separation of cells in response to microtopography. Biomaterials, 2013, 34, 8097-8104.	11.4	43
34	Quantification of Intracellular Mitochondrial Displacements in Response to Nanomechanical Forces. Methods in Molecular Biology, 2013, 991, 185-193.	0.9	2
35	Force nanoscopy of cell mechanics and cell adhesion. Nanoscale, 2013, 5, 4094.	5.6	85
36	Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics. Physical Biology, 2013, 10, 066003.	1.8	30

3

#	Article	IF	CITATIONS
37	Femtosecond laser induced surface swelling in poly-methyl methacrylate. Optics Express, 2013, 21, 12527.	3.4	33
38	The role of the actin cortex in maintaining cell shape. Communicative and Integrative Biology, 2013, 6, e26714.	1.4	19
39	Actin and microtubules play distinct roles in governing the anisotropic deformation of cell nuclei in response to substrate strain. Cytoskeleton, 2013, 70, 837-848.	2.0	35
40	Chronic Over-Expression of Heat Shock Protein 27 Attenuates Atherogenesis and Enhances Plaque Remodeling: A Combined Histological and Mechanical Assessment of Aortic Lesions. PLoS ONE, 2013, 8, e55867.	2.5	37
41	Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. Journal of Cell Science, 2012, 125, 603-613.	2.0	56
42	An Approach to Visualize the Deformation of the Intermediate Filament Cytoskeleton in Response to Locally Applied Forces., 2012, 2012, 1-9.		3
43	Mechanically induced deformation and strain dynamics in actin stress fibers. Communicative and Integrative Biology, 2012, 5, 627-630.	1.4	9
44	The Physical Interaction of Myoblasts with the Microenvironment during Remodeling of the Cytoarchitecture. PLoS ONE, 2012, 7, e45329.	2.5	14
45	Investigating Mammalian Cell Nanomechanics with Simultaneous Optical and Atomic Force Microscopy., 2011,, 375-403.		0
46	Cell sheet integrity and nanomechanical breakdown during programmed cell death. Medical and Biological Engineering and Computing, 2010, 48, 1015-1022.	2.8	4
47	Cell nanomechanics and focal adhesions are regulated by retinol and conjugated linoleic acid in a dose-dependent manner. Nanotechnology, 2009, 20, 285103.	2.6	14
48	Mechanical dynamics of single cells during early apoptosis. Cytoskeleton, 2009, 66, 409-422.	4.4	80
49	Characterization of the interface between normal and transformed epithelial cells. Nature Cell Biology, 2009, 11, 460-467.	10.3	307
50	Dynamic mechanical oscillations during metamorphosis of the monarch butterfly. Journal of the Royal Society Interface, 2009, 6, 29-37.	3.4	16
51	An historical perspective on cell mechanics. Pflugers Archiv European Journal of Physiology, 2008, 456, 3-12.	2.8	45
52	Mitochondrial displacements in response to nanomechanical forces. Journal of Molecular Recognition, 2008, 21, 30-36.	2.1	35
53	Moesin Controls Cortical Rigidity, Cell Rounding, and Spindle Morphogenesis during Mitosis. Current Biology, 2008, 18, 91-101.	3.9	381
54	Tracking displacements of intracellular organelles in response to nanomechanical forces., 2008,,.		5

#	Article	IF	CITATION
55	Mapping correlated membrane pulsations and fluctuations in human cells. Journal of Molecular Recognition, 2007, 20, 467-475.	2.1	41
56	Distinct contributions of microtubule subtypes to cell membrane shape and stability. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 43-52.	3.3	58
57	Integrated Confocal and Scanning Probe Microscopy for Biomedical Research. Scientific World Journal, The, 2006, 6, 1609-1618.	2.1	51
58	Self-organized and highly ordered domain structures within swarms of Myxococcus xanthus. Cytoskeleton, 2006, 63, 141-148.	4.4	22
59	Atomic force microscopy study of the structure–function relationships of the biofilm-forming bacteriumStreptococcus mutans. Nanotechnology, 2006, 17, S1-S7.	2.6	46
60	Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 178-183.	3.3	53
61	Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili. Microbiology (United Kingdom), 2005, 151, 353-360.	1.8	25
62	Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6484-6489.	7.1	112
63	DNA base pair resolution by single molecule force spectroscopy. Nucleic Acids Research, 2004, 32, 4876-4883.	14.5	68
64	Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae. Science, 2004, 305, 1147-1150.	12.6	328
65	Complementary TEM and AFM Force Spectroscopy to Characterize the Nanomechanical Properties of Nanoparticle Chain Aggregates. Nano Letters, 2004, 4, 2287-2292.	9.1	57
66	S-Nitrosylation of Cross-Linked Hemoglobins at \hat{l}^2 -Cysteine-93: \hat{A} Stabilized Hemoglobins as Nitric Oxide Sources. Journal of the American Chemical Society, 2000, 122, 10734-10735.	13.7	6