James R Woodgett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8967514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiomyocyteâ€CSKâ€3β deficiency induces cardiac progenitor cell proliferation in the ischemic heart through paracrine mechanisms. Journal of Cellular Physiology, 2022, 237, 1804-1817.	2.0	8
2	Multicenter international assessment of a SARS-CoV-2 RT-LAMP test for point of care clinical application. PLoS ONE, 2022, 17, e0268340.	1.1	15
3	Novel GSK-3 kinase inhibitor Pym-5 induces GSK-3β rather than GSK-3α-dependent melanogenesis in murine melanoma cells. Journal of Dermatological Science, 2022, , .	1.0	0
4	Glycogen synthase kinase 3 alpha/beta deletion induces precocious growth plate remodeling in mice. Journal of Molecular Medicine, 2021, 99, 831-844.	1.7	7
5	Comparison of SARS-CoV-2 indirect and direct RT-qPCR detection methods. Virology Journal, 2021, 18, 99.	1.4	22
6	Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nature Communications, 2021, 12, 5238.	5.8	8
7	GSK-3 mediates nuclear translocation of p62/SQSTM1 in MPTP-induced mouse model of Parkinson's disease. Neuroscience Letters, 2021, 763, 136177.	1.0	2
8	Emerging roles of GSK-3α in pathophysiology: Emphasis on cardio-metabolic disorders. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118616.	1.9	31
9	Glycogen synthase kinaseâ€3β inhibits tubular regeneration in acute kidney injury by a FoxM1â€dependent mechanism. FASEB Journal, 2020, 34, 13597-13608.	0.2	20
10	GSK-3β Contributes to Parkinsonian Dopaminergic Neuron Death: Evidence From Conditional Knockout Mice and Tideglusib. Frontiers in Molecular Neuroscience, 2020, 13, 81.	1.4	37
11	Toronto Workshop on Late Recurrence in Estrogen Receptor-Positive Breast Cancer: Part 2: Approaches to Predict and Identify Late Recurrence, Research Directions. JNCI Cancer Spectrum, 2019, 3, pkz049.	1.4	11
12	Toronto Workshop on Late Recurrence in Estrogen Receptor–Positive Breast Cancer: Part 1: Late Recurrence: Current Understanding, Clinical Considerations. JNCI Cancer Spectrum, 2019, 3, pkz050.	1.4	15
13	Who Actually Funds Cancer Research?. JNCI Cancer Spectrum, 2019, 3, pkz070.	1.4	1
14	A Low-Therapeutic Dose of Lithium Inhibits GSK3 and Enhances Myoblast Fusion in C2C12 Cells. Cells, 2019, 8, 1340.	1.8	23
15	Podocyte GSK3α is important for autophagy and its loss detrimental for glomerular function. FASEB BioAdvances, 2019, 1, 498-510.	1.3	6
16	Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nature Communications, 2019, 10, 403.	5.8	50
17	A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling. Breast Cancer Research, 2019, 21, 18.	2.2	37
18	Cardiomyocyte-GSK-3α promotes mPTP opening and heart failure in mice with chronic pressure overload. Journal of Molecular and Cellular Cardiology, 2019, 130, 65-75.	0.9	34

#	Article	IF	CITATIONS
19	Molecular stratification within triple-negative breast cancer subtypes. Scientific Reports, 2019, 9, 19107.	1.6	78
20	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	13.5	85
21	Identification of CDC25 as a Common Therapeutic Target for Triple-Negative Breast Cancer. Cell Reports, 2018, 23, 112-126.	2.9	58
22	Gimap5-dependent inactivation of GSK3β is required for CD4+ T cell homeostasis and prevention of immune pathology. Nature Communications, 2018, 9, 430.	5.8	32
23	lsoform-specific requirement for CSK3α in sperm for male fertilityâ€. Biology of Reproduction, 2018, 99, 384-394.	1.2	30
24	Correction of GSK3ß at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB Journal, 2018, 32, 2073-2085.	0.2	27
25	Polypharmacological Profiles Underlying the Antitumor Property of <i>Salvia miltiorrhiza</i> Root (Danshen) Interfering with NOX-Dependent Neutrophil Extracellular Traps. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	1.9	22
26	Glycogen Synthase Kinase-3. , 2018, , 2161-2168.		0
27	Gsk3 is a metabolic checkpoint regulator in B cells. Nature Immunology, 2017, 18, 303-312.	7.0	222
28	A ZIP6-ZIP10 heteromer controls NCAM1 phosphorylation and integration into focal adhesion complexes during epithelial-to-mesenchymal transition. Scientific Reports, 2017, 7, 40313.	1.6	22
29	Glycogen Synthase Kinase 3. Current Topics in Developmental Biology, 2017, 123, 277-302.	1.0	184
30	Xanthatin triggers Chk1-mediated DNA damage response and destabilizes Cdc25C via lysosomal degradation in lung cancer cells. Toxicology and Applied Pharmacology, 2017, 337, 85-94.	1.3	22
31	Glycogen Synthase Kinase-3 Modulates Cbl-b and Constrains T Cell Activation. Journal of Immunology, 2017, 199, 4056-4065.	0.4	13
32	Recent advances in understanding the cellular roles of GSK-3. F1000Research, 2017, 6, 167.	0.8	79
33	Regulation of the protein kinase activity of ShaggyZeste-white3 by components of the Wingless pathway in Drosophila cells and embryos Journal of Biological Chemistry, 2016, 291, 23364.	1.6	0
34	Enabling the Next 25 Years of Cell Biology. Trends in Cell Biology, 2016, 26, 789-791.	3.6	0
35	Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature Cell Biology, 2016, 18, 954-966.	4.6	129
36	Xanthatin anti-tumor cytotoxicity is mediated via glycogen synthase kinase-3β and β-catenin. Biochemical Pharmacology, 2016, 115, 18-27.	2.0	28

#	Article	IF	CITATIONS
37	Mutational Analysis of Glycogen Synthase Kinase 3β Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90. Molecular and Cellular Biology, 2016, 36, 1007-1018.	1.1	9
38	P-129 Gimap5 Is Required for GSK3ß Inhibition Controlling the Transcriptional Program Required for T Cell Proliferation/Differentiation While Maintaining Gut Homeostasis. Inflammatory Bowel Diseases, 2016, 22, S49.	0.9	0
39	Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy. Circulation Research, 2016, 118, 1208-1222.	2.0	92
40	The GSK-3 Family as Therapeutic Target for Myocardial Diseases. Circulation Research, 2015, 116, 138-149.	2.0	174
41	Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease. Kidney International, 2015, 87, 1164-1175.	2.6	39
42	Fine-Tuning of the RIC-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Molecular and Cellular Biology, 2015, 35, 3029-3043.	1.1	27
43	Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice. American Journal of Physiology - Renal Physiology, 2015, 308, F650-F660.	1.3	26
44	Ras Signaling Is a Key Determinant for Metastatic Dissemination and Poor Survival of Luminal Breast Cancer Patients. Cancer Research, 2015, 75, 4960-4972.	0.4	48
45	Effect of glycogen synthase kinase-3 inactivation on mouse mammary gland development and oncogenesis. Oncogene, 2015, 34, 3514-3526.	2.6	27
46	Abstract P1-07-24: Modeling breast cancer metastasis in the mouse via measurement of circulating tumor cells. , 2015, , .		0
47	mTOR regulates brain morphogenesis by mediating GSK3 signaling. Development (Cambridge), 2014, 141, 4076-4086.	1.2	109
48	How to Become a Control FreakReview and commentary on <i>Signal Transduction: Principles, Pathways, and Processes</i> , edited by Lewis C. Cantley, Tony Hunter, Richard Sever,and Jeremy Thorner. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2014. 452 pp. ISBN: 978-0-879699-01-7. Science Signaling, 2014, 7, .	1.6	0
49	Neuronal deletion of GSK3Î ² increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2. BMC Biology, 2014, 12, 47.	1.7	72
50	Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. Journal of Circadian Rhythms, 2014, 5, 3.	2.9	110
51	Burning platforms: friending social media's role in #scicomm. Trends in Cell Biology, 2014, 24, 555-557.	3.6	2
52	Cardiomyocyte-Specific Deletion of Gsk3αÂMitigates Post–Myocardial InfarctionÂRemodeling, Contractile Dysfunction, and Heart Failure. Journal of the American College of Cardiology, 2014, 64, 696-706.	1.2	63
53	Cardiac Fibroblast Glycogen Synthase Kinase-3Ĵ² Regulates Ventricular Remodeling and Dysfunction in Ischemic Heart. Circulation, 2014, 130, 419-430.	1.6	148
54	Signals Controlling Unâ€Differentiated States in Embryonic Stem and Cancer Cells: Role of the Phosphatidylinositol 3′ Kinase Pathway. Journal of Cellular Physiology, 2014, 229, 1312-1322.	2.0	18

#	Article	IF	CITATIONS
55	GSK-3β Function in Bone Regulates Skeletal Development, Whole-Body Metabolism, and Male Life Span. Endocrinology, 2013, 154, 3702-3718.	1.4	33
56	Activation of PDK-1 maintains mouse embryonic stem cell self-renewal in a PKB-dependent manner. Oncogene, 2013, 32, 5397-5408.	2.6	17
57	Impact: Akin to quantifying dreams. Nature, 2013, 503, 198-198.	13.7	0
58	There's more to lithium than Nirvana. Nature Reviews Molecular Cell Biology, 2013, 14, 466-466.	16.1	0
59	The responses of neural stem cells to the level of GSK-3 depend on the tissue of origin. Biology Open, 2013, 2, 812-821.	0.6	6
60	Regulation of Th1 Cells and Experimental Autoimmune Encephalomyelitis by Glycogen Synthase Kinase-3. Journal of Immunology, 2013, 190, 5000-5011.	0.4	71
61	Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation. Oncogene, 2013, 32, 2048-2057.	2.6	51
62	Single Unpurified Breast Tumor-Initiating Cells from Multiple Mouse Models Efficiently Elicit Tumors in Immune-Competent Hosts. PLoS ONE, 2013, 8, e58151.	1.1	10
63	GSK-3α is a central regulator of age-related pathologies in mice. Journal of Clinical Investigation, 2013, 123, 1821-1832.	3.9	137
64	Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. Journal of Clinical Investigation, 2013, 123, 224-235.	3.9	327
65	GSK-3α and GSK-3β Proteins Are Involved in Early Stages of Chondrocyte Differentiation with Functional Redundancy through RelA Protein Phosphorylation*. Journal of Biological Chemistry, 2012, 287, 29227-29236.	1.6	43
66	Thousand-citation papers are outliers. Nature, 2012, 492, 356-356.	13.7	1
67	Specific deletion of glycogen synthase kinase-3β in the renal proximal tubule protects against acute nephrotoxic injury in mice. Kidney International, 2012, 82, 1000-1009.	2.6	47
68	Glycogen Synthase Kinase-3α Limits Ischemic Injury, Cardiac Rupture, Post–Myocardial Infarction Remodeling and Death. Circulation, 2012, 125, 65-75.	1.6	64
69	Can a Two-Faced Kinase be Exploited for Osteosarcoma?. Journal of the National Cancer Institute, 2012, 104, 722-723.	3.0	7
70	Neurological Functions of the Masterswitch Protein Kinase – Gsk-3. Frontiers in Molecular Neuroscience, 2012, 5, 48.	1.4	20
71	Inactivation of the Enzyme GSK3α by the Kinase IKKi Promotes AKT-mTOR Signaling Pathway that Mediates Interleukin-1-Induced Th17 Cell Maintenance. Immunity, 2012, 37, 800-812.	6.6	69
72	We must be open about our mistakes. Nature, 2012, 489, 7-7.	13.7	5

#	Article	IF	CITATIONS
73	G Protein Beta/Gamma. , 2012, , 702-710.		Ο
74	GC-A. , 2012, , 769-769.		0
75	G Protein Alpha Transducin. , 2012, , 698-702.		0
76	The Effects of Glycogen Synthase Kinase-3beta in Serotonin Neurons. PLoS ONE, 2012, 7, e43262.	1.1	24
77	GSK3β mediates muscle pathology in myotonic dystrophy. Journal of Clinical Investigation, 2012, 122, 4461-4472.	3.9	104
78	Towards the preparation of radiolabeled 1-aryl-3-benzyl ureas: Radiosynthesis of [11C-carbonyl] AR-A014418 by [11C]CO2 fixation. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2099-2101.	1.0	33
79	Renal Collecting Duct Specific GSK 3 alpha Regulates Cellular Distribution and Lithiumâ€Induced NDI. FASEB Journal, 2012, 26, 885.16.	0.2	0
80	Genetic inactivation of GSK3α rescues spine deficits in Disc1-L100P mutant mice. Schizophrenia Research, 2011, 129, 74-79.	1.1	35
81	GSK-3 $\hat{1}$ ±/ $\hat{1}^2$ kinases and amyloid production in vivo. Nature, 2011, 480, E4-E5.	13.7	67
82	Targeting GSK-3 family members in the heart: A very sharp double-edged sword. Journal of Molecular and Cellular Cardiology, 2011, 51, 607-613.	0.9	61
83	GSK-3: Functional Insights from Cell Biology and Animal Models. Frontiers in Molecular Neuroscience, 2011, 4, 40.	1.4	396
84	Tissue-Specific Analysis of Glycogen Synthase Kinase-3α (GSK-3α) in Glucose Metabolism: Effect of Strain Variation. PLoS ONE, 2011, 6, e15845.	1.1	34
85	Assessment of Social Interaction Behaviors. Journal of Visualized Experiments, 2011, , .	0.2	306
86	β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene, 2011, 30, 178-189.	2.6	92
87	Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation. FEBS Letters, 2011, 585, 1158-1162.	1.3	46
88	Genetic and pharmacological evidence for schizophreniaâ€related Disc1 interaction with GSKâ€3. Synapse, 2011, 65, 234-248.	0.6	85
89	Deletion of Glycogen Synthase Kinase-3β in Cartilage Results in Up-Regulation of Glycogen Synthase Kinase-3α Protein Expression. Endocrinology, 2011, 152, 1755-1766.	1.4	37
90	Abstract LB-93: The role of GSK-3 in mammary gland development and oncogenesis. , 2011, , .		0

#	Article	IF	CITATIONS
91	Conditional ablation of Gsk-3β in islet beta cells results in expanded mass and resistance to fat feeding-induced diabetes in mice. Diabetologia, 2010, 53, 2600-2610.	2.9	91
92	Defining the role of APC in the mitotic spindle checkpoint in vivo: APC-deficient cells are resistant to Taxol. Oncogene, 2010, 29, 6418-6427.	2.6	29
93	Basic research: bizarre but essential. Nature, 2010, 467, 400-400.	13.7	0
94	When pathways collide: collaboration and connivance among signalling proteins in development. Nature Reviews Molecular Cell Biology, 2010, 11, 404-413.	16.1	141
95	GSK-3α directly regulates β-adrenergic signaling and the response of the heart to hemodynamic stress in mice. Journal of Clinical Investigation, 2010, 120, 2280-2291.	3.9	54
96	Glycogen Synthase Kinase-3β Regulates Post–Myocardial Infarction Remodeling and Stress-Induced Cardiomyocyte Proliferation In Vivo. Circulation Research, 2010, 106, 1635-1645.	2.0	108
97	GSK3β Mediates Renal Response to Vasopressin by Modulating Adenylate Cyclase Activity. Journal of the American Society of Nephrology: JASN, 2010, 21, 428-437.	3.0	71
98	Role of Phosphoinositide 3-Kinase α, Protein Kinase C, and L-Type Ca ²⁺ Channels in Mediating the Complex Actions of Angiotensin II on Mouse Cardiac Contractility. Hypertension, 2010, 56, 422-429.	1.3	25
99	Inhibitory Phosphorylation of GSK-3 by CaMKII Couples Depolarization to Neuronal Survival. Journal of Biological Chemistry, 2010, 285, 41122-41134.	1.6	77
100	Does GSK-3 provide a shortcut for PI3K activation of Wnt signalling?. F1000 Biology Reports, 2010, 2, 82.	4.0	52
101	Mitogen-Activated Protein Kinases. , 2010, , 533-538.		4
102	Lef1 Haploinsufficient Mice Display a Low Turnover and Low Bone Mass Phenotype in a Gender- and Age-Specific Manner. PLoS ONE, 2009, 4, e5438.	1.1	58
103	Unique and Overlapping Functions of GSK-3 Isoforms in Cell Differentiation and Proliferation and Cardiovascular Development. Journal of Biological Chemistry, 2009, 284, 9643-9647.	1.6	118
104	IL-17 Receptor Signaling Inhibits C/EBPβ by Sequential Phosphorylation of the Regulatory 2 Domain. Science Signaling, 2009, 2, ra8.	1.6	118
105	Akt1 and Akt2 Play Distinct Roles in the Initiation and Metastatic Phases of Mammary Tumor Progression. Cancer Research, 2009, 69, 5057-5064.	0.4	154
106	Utility of metformin in breast cancer treatment, is neoangiogenesis a risk factor?. Breast Cancer Research and Treatment, 2009, 114, 387-389.	1.1	37
107	GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neuroscience, 2009, 12, 1390-1397.	7.1	355
108	Exploring Pluripotency with Chemical Genetics. Cell Stem Cell, 2009, 4, 98-100.	5.2	13

#	Article	IF	CITATIONS
109	Abnormalities in brain structure and behavior in GSK-3alpha mutant mice. Molecular Brain, 2009, 2, 35.	1.3	162
110	Rationally designed PKA inhibitors for positron emission tomography: Synthesis and cerebral biodistribution of N-(2-(4-bromocinnamylamino)ethyl)-N-[11C]methyl-isoquinoline-5-sulfonamide. Bioorganic and Medicinal Chemistry, 2008, 16, 5277-5284.	1.4	15
111	Frequent accumulation of nuclear E-cadherin and alterations in the Wnt signaling pathway in esophageal squamous cell carcinomas. Modern Pathology, 2008, 21, 271-281.	2.9	58
112	The ground state of embryonic stem cell self-renewal. Nature, 2008, 453, 519-523.	13.7	3,057
113	Micromanaging ideas risks impeding flow of potential benefits. Nature, 2008, 454, 939-939.	13.7	0
114	Glycogen Synthase Kinase-3 and Cancer: Good Cop, Bad Cop?. Cancer Cell, 2008, 14, 351-353.	7.7	93
115	Clinical Uses of Microarrays in Cancer Research. Methods in Molecular Medicine, 2008, 141, 87-113.	0.8	18
116	Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opinion on Therapeutic Targets, 2008, 12, 1265-1274.	1.5	99
117	Tissue-Specific Role of Glycogen Synthase Kinase 3β in Glucose Homeostasis and Insulin Action. Molecular and Cellular Biology, 2008, 28, 6314-6328.	1.1	221
118	Homozygous deletion of glycogen synthase kinase 3β bypasses senescence allowing Ras transformation of primary murine fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5248-5253.	3.3	22
119	Genetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance. PLoS Biology, 2008, 6, e37.	2.6	96
120	Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development (Cambridge), 2008, 135, 367-375.	1.2	381
121	Clycogen synthase kinase-3β heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results. Behavioural Pharmacology, 2008, 19, 217-224.	0.8	38
122	Phosphorylation of GSK-3Î ² by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes. Journal of Clinical Investigation, 2008, 118, 2506-15.	3.9	53
123	Phosphorylation of GSK-3Î ² by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes. Journal of Clinical Investigation, 2008, 118, 2986-2986.	3.9	56
124	GSK-3β in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1–dependent mechanism. Journal of Clinical Investigation, 2008, 118, 3279-90.	3.9	45
125	GSK-3β in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1–dependent mechanism. Journal of Clinical Investigation, 2008, 118, 3813-3813.	3.9	48
126	Deletion of GSK-3Î ² in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. Journal of Clinical Investigation, 2008, 118, 3609-3618.	3.9	204

#	Article	IF	CITATIONS
127	Glycogen Synthase Kinase-3β Induces Neuronal Cell Death via Direct Phosphorylation of Mixed Lineage Kinase 3. Journal of Biological Chemistry, 2007, 282, 30393-30405.	1.6	68
128	R-spondin1 Is a High Affinity Ligand for LRP6 and Induces LRP6 Phosphorylation and β-Catenin Signaling. Journal of Biological Chemistry, 2007, 282, 15903-15911.	1.6	169
129	CD4+ and CD8+ T Cell Survival Is Regulated Differentially by Protein Kinase CÎ, c-Rel, and Protein Kinase B. Journal of Immunology, 2007, 178, 2932-2939.	0.4	49
130	Systematic Discovery of In Vivo Phosphorylation Networks. Cell, 2007, 129, 1415-1426.	13.5	702
131	Glycogen Synthase Kinase 31±-Specific Regulation of Murine Hepatic Glycogen Metabolism. Cell Metabolism, 2007, 6, 329-337.	7.2	271
132	Functional Redundancy of GSK-3α and GSK-3β in Wnt/β-Catenin Signaling Shown by Using an Allelic Series of Embryonic Stem Cell Lines. Developmental Cell, 2007, 12, 957-971.	3.1	428
133	Role of Glycogen Synthase Kinase-3 in Cell Fate and Epithelial-Mesenchymal Transitions. Cells Tissues Organs, 2007, 185, 73-84.	1.3	162
134	GSK-3β Controls Osteogenesis through Regulating Runx2 Activity. PLoS ONE, 2007, 2, e837.	1.1	134
135	Expression of Wnt-signaling pathway proteins in intraductal papillary mucinous neoplasms of the pancreas: a tissue microarray analysis. Human Pathology, 2006, 37, 212-217.	1.1	47
136	IFN-Î ³ Suppresses IL-10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity, 2006, 24, 563-574.	6.6	370
137	Essential Roles for GSK-3s and GSK-3-Primed Substrates in Neurotrophin-Induced and Hippocampal Axon Growth. Neuron, 2006, 52, 981-996.	3.8	227
138	Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends in Cell Biology, 2006, 16, 461-466.	3.6	162
139	Serum and glucocorticoid-regulated protein kinases: Variations on a theme. Journal of Cellular Biochemistry, 2006, 98, 1391-1407.	1.2	117
140	Role of the Phox Homology Domain and Phosphorylation in Activation of Serum and Glucocorticoid-regulated Kinase-3. Journal of Biological Chemistry, 2006, 281, 23978-23989.	1.6	55
141	Differential gene expression profiling of short and long term denervated muscle. FASEB Journal, 2006, 20, 115-117.	0.2	105
142	Glycogen Synthase Kinase-3 - An Overview of An Over-Achieving Protein Kinase. Current Drug Targets, 2006, 7, 1377-1388.	1.0	253
143	GSK3: an in-Toll-erant protein kinase?. Nature Immunology, 2005, 6, 751-752.	7.0	107
144	Modulating autoimmunity: pick your PI3 kinase. Nature Medicine, 2005, 11, 924-925.	15.2	15

#	Article	IF	CITATIONS
145	Chronic activation of protein kinase Bβ/Akt2 leads to multinucleation and cell fusion in human epithelial kidney cells: events associated with tumorigenesis. Oncogene, 2005, 24, 5459-5470.	2.6	31
146	A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 2005, 438, 873-877.	13.7	728
147	Recent advances in the protein kinase B signaling pathway. Current Opinion in Cell Biology, 2005, 17, 150-157.	2.6	324
148	Cardioprotective stress response in the human fetal heart. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1128-1136.	0.4	31
149	Differential gene expression profile reveals deregulation of pregnancy specific β1 glycoprotein 9 early during colorectal carcinogenesis. BMC Cancer, 2005, 5, 66.	1.1	35
150	Phosphoinositide-Dependent Phosphorylation of PDK1 Regulates Nuclear Translocation. Molecular and Cellular Biology, 2005, 25, 2347-2363.	1.1	81
151	NF-κB Couples Protein Kinase B/Akt Signaling to Distinct Survival Pathways and the Regulation of Lymphocyte Homeostasis In Vivo. Journal of Immunology, 2005, 175, 3790-3799.	0.4	42
152	The links between axin and carcinogenesis. Journal of Clinical Pathology, 2005, 58, 225-236.	1.0	203
153	CpG Island microarray probe sequences derived from a physical library are representative of CpG Islands annotated on the human genome. Nucleic Acids Research, 2005, 33, 2952-2961.	6.5	89
154	Problems with Co-Funding in Canada. Science, 2005, 308, 1867b-1867b.	6.0	6
155	Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5099-5104.	3.3	739
156	Clycogen Synthase Kinase 3β Is a Negative Regulator of Growth Factor-induced Activation of the c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2004, 279, 51075-51081.	1.6	42
157	Activation of Akt-1 (PKB-α) Can Accelerate ErbB-2-Mediated Mammary Tumorigenesis but Suppresses Tumor Invasion. Cancer Research, 2004, 64, 3171-3178.	0.4	235
158	Clycogen Synthase Kinase-3Â Haploinsufficiency Mimics the Behavioral and Molecular Effects of Lithium. Journal of Neuroscience, 2004, 24, 6791-6798.	1.7	411
159	Kinase-dead PKB gene therapy combined with hyperthermia for human breast cancer. Cancer Gene Therapy, 2004, 11, 52-60.	2.2	13
160	Proteomic, Functional, and Domain-Based Analysis of In Vivo 14-3-3 Binding Proteins Involved in Cytoskeletal Regulation and Cellular Organization. Current Biology, 2004, 14, 1436-1450.	1.8	412
161	Clycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword?. Biochemical Society Transactions, 2004, 32, 803-808.	1.6	137
162	Glycogen Synthase Kinase-3. , 2004, , 255-260.		1

Glycogen Synthase Kinase-3., 2004, , 255-260. 162

#	Article	IF	CITATIONS
163	Is There an Answer?. IUBMB Life, 2003, 55, 285-286.	1.5	Ο
164	Negative regulation of phosphatidylinositol 3-kinase and Akt signalling pathway by PKC. Cellular Signalling, 2003, 15, 37-45.	1.7	59
165	Mental plaque removal. Nature, 2003, 423, 392-393.	13.7	42
166	GSK-3: tricks of the trade for a multi-tasking kinase. Journal of Cell Science, 2003, 116, 1175-1186.	1.2	1,862
167	Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Letters, 2003, 546, 108-112.	1.3	354
168	Jnk1 activity lowers the cellular production of H2O2 and modulates the growth arrest response to scavenging of H2O2 by catalase. Experimental Cell Research, 2003, 285, 146-158.	1.2	11
169	Negative Regulation of Mixed Lineage Kinase 3 by Protein Kinase B/AKT Leads to Cell Survival. Journal of Biological Chemistry, 2003, 278, 3897-3902.	1.6	123
170	Stabilization of Â-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4610-4615.	3.3	220
171	Physiological Roles of Glycogen Synthase Kinase-3: Potential as a Therapeutic Target for Diabetes and Other Disorders. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2003, 3, 281-290.	1.8	75
172	MAP Kinases. , 2003, , 493-497.		0
173	Convergence of Multiple Signaling Cascades at Glycogen Synthase Kinase 3: Edg Receptor-Mediated Phosphorylation and Inactivation by Lysophosphatidic Acid through a Protein Kinase C-Dependent Intracellular Pathway. Molecular and Cellular Biology, 2002, 22, 2099-2110.	1.1	164
174	CD28-dependent Activation of Protein Kinase B/Akt Blocks Fas-mediated Apoptosis by Preventing Death-inducing Signaling Complex Assembly. Journal of Experimental Medicine, 2002, 196, 335-348.	4.2	128
175	Open Heart Surgery of PI-3 Kinase Signaling. Cell Cycle, 2002, 1, 404-405.	1.3	0
176	Multiple Phosphoinositide 3-Kinase-Dependent Steps in Activation of Protein Kinase B. Molecular and Cellular Biology, 2002, 22, 6247-6260.	1.1	313
177	A molecular compendium of genes expressed in multiple myeloma. Blood, 2002, 100, 2175-2186.	0.6	174
178	DREAM Is a Critical Transcriptional Repressor for Pain Modulation. Cell, 2002, 108, 31-43.	13.5	274
179	Role of glycogen synthase kinase-3 in cancer: Regulation by Wnts and other signaling pathways. Advances in Cancer Research, 2002, 84, 203-229.	1.9	127
180	The active form of glycogen synthase kinase-3? is associated with granulovacuolar degeneration in neurons in Alzheimer's disease. Acta Neuropathologica, 2002, 103, 91-99.	3.9	171

#	Article	IF	CITATIONS
181	Activation of Akt (Protein Kinase B) in Mammary Epithelium Provides a Critical Cell Survival Signal Required for Tumor Progression. Molecular and Cellular Biology, 2001, 21, 2203-2212.	1.1	262
182	Regulation of Drosophila Tracheal System Development by Protein Kinase B. Developmental Cell, 2001, 1, 817-827.	3.1	33
183	Opposing regulation of B cell receptor-induced activation of mitogen-activated protein kinases by CD45. FEBS Letters, 2001, 490, 97-101.	1.3	9
184	STEM CELLS: PTENCoupling Tumor Suppression to Stem Cells?. Science, 2001, 294, 2116-2118.	6.0	20
185	Chapter 13 Mitogen-activated protein kinases and stress. Cell and Molecular Response To Stress, 2001, 2, 175-193.	0.4	5
186	Glycogen Synthase Kinase-3:Â Properties, Functions, and Regulation. Chemical Reviews, 2001, 101, 2527-2540.	23.0	357
187	Phosphatidylinositol 3' kinase signaling in mammary tumorigenesis. Journal of Mammary Cland Biology and Neoplasia, 2001, 6, 83-99.	1.0	34
188	The role of protein kinase B (PKB) in modulating heat sensitivity in a human breast cancer cell line. International Journal of Radiation Oncology Biology Physics, 2001, 50, 1041-1050.	0.4	20
189	PKB/AKT: functional insights from genetic models. Nature Reviews Molecular Cell Biology, 2001, 2, 760-768.	16.1	561
190	Extracellular matrix composition determines the transcriptional response to epidermal growth factor receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4472-4477.	3.3	58
191	Judging a Protein by More Than Its Name: GSK-3. Science Signaling, 2001, 2001, re12-re12.	1.6	210
192	Expression of Active Protein Kinase B in T Cells Perturbs Both T and B Cell Homeostasis and Promotes Inflammation. Journal of Immunology, 2001, 167, 42-48.	0.4	80
193	X Protein of Hepatitis B Virus Inhibits Fas-mediated Apoptosis and Is Associated with Up-regulation of the SAPK/JNK Pathway. Journal of Biological Chemistry, 2001, 276, 8328-8340.	1.6	149
194	Glycogen Synthase Kinase 3β Negatively Regulates Both DNA-binding and Transcriptional Activities of Heat Shock Factor 1. Journal of Biological Chemistry, 2000, 275, 29147-29152.	1.6	144
195	The conserved PI3′K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene, 2000, 19, 3971-3977.	2.6	185
196	Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature, 2000, 406, 86-90.	13.7	1,346
197	Protein kinases: Six degrees of separation?. Current Biology, 2000, 10, R191-R194.	1.8	45
198	Stress Pathway Activation Induces Phosphorylation of Retinoid X Receptor. Journal of Biological Chemistry, 2000, 275, 32193-32199.	1.6	82

#	Article	IF	CITATIONS
199	Negative Regulation of T Cell Proliferation and Interleukin 2 Production by the Serine Threonine Kinase Gsk-3. Journal of Experimental Medicine, 2000, 192, 99-104.	4.2	142
200	Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor κb Activation, and Bcl-XL Levels in Vivo. Journal of Experimental Medicine, 2000, 191, 1721-1734.	4.2	309
201	Glycogen Synthase Kinase-3β Is a Negative Regulator of Cardiomyocyte Hypertrophy. Journal of Cell Biology, 2000, 151, 117-130.	2.3	368
202	Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proceedings of the United States of America, 2000, 97, 11960-11965.	3.3	715
203	Regulation of the Protein Kinase Activity of ShaggyZeste-white3 by Components of the Wingless Pathway in Drosophila Cells and Embryos. Journal of Biological Chemistry, 1999, 274, 21790-21796.	1.6	76
204	Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of β-catenin,a component of the presenilin protein complex. Nature Medicine, 1999, 5, 164-169.	15.2	235
205	Bcl-2 targeted to the endoplasmic reticulum can inhibit apoptosis induced by Myc but not etoposide in Rat-1 fibroblasts. Oncogene, 1999, 18, 3520-3528.	2.6	61
206	Mediation of TNF receptor-associated factor effector functions by apoptosis signal-regulating kinase-1 (ASK1). Oncogene, 1999, 18, 5814-5820.	2.6	109
207	Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene, 1999, 18, 6094-6103.	2.6	111
208	The stress-activated protein kinase pathways. Cellular and Molecular Life Sciences, 1999, 55, 1230-1254.	2.4	592
209	Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochemical Journal, 1999, 341, 293-298.	1.7	69
210	Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochemical Journal, 1999, 341, 293.	1.7	23
211	Protein Kinase B/Akt Participates in GLUT4 Translocation by Insulin in L6 Myoblasts. Molecular and Cellular Biology, 1999, 19, 4008-4018.	1.1	534
212	Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochemical Journal, 1999, 341 (Pt 2), 293-8.	1.7	26
213	Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development (Cambridge), 1999, 126, 325-33.	1.2	22
214	An oncogenic mutation uncouples the v-Jun oncoprotein from positive regulation by the SAPK/JNK pathway in vivo. Current Biology, 1998, 8, 117-120.	1.8	32
215	Genetic analysis of protein kinase B (AKT) in Drosophila. Current Biology, 1998, 8, 599-603.	1.8	127
216	Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11211-11216.	3.3	1,012

#	Article	IF	CITATIONS
217	Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochemical Journal, 1998, 335, 1-13.	1.7	1,014
218	Impaired CD28-mediated Interleukin 2 Production and Proliferation in Stress Kinase SAPK/ERK1 Kinase (SEK1)/Mitogen-activated Protein Kinase Kinase 4 (MKK4)-deficient T Lymphocytes. Journal of Experimental Medicine, 1997, 186, 941-953.	4.2	126
219	Activation of Stress-activated Protein Kinases/c-Jun N-terminal Protein Kinases (SAPKs/JNKs) by a Novel Mitogen-activated Protein Kinase Kinase (MKK7). Journal of Biological Chemistry, 1997, 272, 32378-32383.	1.6	90
220	Cytosolic Alkalinization Increases Stress-activated Protein Kinase/c-Jun NH2-terminal Kinase (SAPK/JNK) Activity and p38 Mitogen-activated Protein Kinase Activity by a Calcium-independent Mechanism. Journal of Biological Chemistry, 1997, 272, 13653-13659.	1.6	50
221	Opioid Effects on Mitogen-activated Protein Kinase Signaling CascadesÂ. Anesthesiology, 1997, 87, 1118-1126.	1.3	94
222	Tau phosphorylation in transgenic mice expressing glycogen synthase kinase-3β transgenes. NeuroReport, 1997, 8, 3251-3255.	0.6	103
223	Novel components of mammalian stress-activated protein kinase cascades. Biochemical Society Transactions, 1997, 25, 491-498.	1.6	7
224	Activation of SAPK/JNK by TNF Receptor 1 Through a Noncytotoxic TRAF2-Dependent Pathway. Science, 1997, 275, 200-203.	6.0	450
225	Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature, 1997, 385, 350-353.	13.7	339
226	Creating a home page. Trends in Biochemical Sciences, 1997, 22, 14.	3.7	163
227	Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-31± and β isoforms in patients with NIDDM. Diabetologia, 1997, 40, 940-946.	2.9	45
228	Reconstitution of novel signalling cascades responding to cellular stresses. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 135-142.	1.8	46
229	CD28 signal transduction pathways. A comparison of B7-1 and B7-2 regulation of the MAP kinases: ERK2 and Jun kinases. Molecular Immunology, 1996, 33, 63-70.	1.0	34
230	Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C EMBO Journal, 1996, 15, 4526-4536.	3.5	351
231	Cross-linking CD40 on B cells preferentially induces stress-activated protein kinases rather than mitogen-activated protein kinases EMBO Journal, 1996, 15, 92-101.	3.5	163
232	HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway EMBO Journal, 1996, 15, 7013-7025.	3.5	211
233	MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6 EMBO Journal, 1996, 15, 7026-7035.	3.5	285
234	<i>Schizosaccharomyces pombe skp1</i> ⁺ Encodes a Protein Kinase Related to Mammalian Glycogen Synthase Kinase 3 and Complements a <i>cdc14</i> Cytokinesis Mutant. Molecular and Cellular Biology, 1996, 16, 179-191.	1.1	54

#	Article	IF	CITATIONS
235	The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Current Biology, 1996, 6, 606-613.	1.8	444
236	Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Current Biology, 1996, 6, 1664-1669.	1.8	1,248
237	Mammalian Mitogen-activated Protein Kinase Pathways Are Regulated through Formation of Specific Kinase-Activator Complexes. Journal of Biological Chemistry, 1996, 271, 29876-29881.	1.6	97
238	Differential Cellular Phosphorylation of Neurofilament Heavy Sideâ€Arms by Glycogen Synthase Kinaseâ€3 and Cyclinâ€Dependent Kinaseâ€5. Journal of Neurochemistry, 1996, 66, 1698-1706.	2.1	120
239	Cross-linking CD40 on B cells preferentially induces stress-activated protein kinases rather than mitogen-activated protein kinases. EMBO Journal, 1996, 15, 92-101.	3.5	45
240	Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO Journal, 1996, 15, 4526-36.	3.5	129
241	HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. EMBO Journal, 1996, 15, 7013-25.	3.5	66
242	MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO Journal, 1996, 15, 7026-35.	3.5	98
243	The stress activated protein kinase pathway. Cancer Surveys, 1996, 27, 127-38.	1.5	43
244	PHOSPHORYLATION OF TAU BY GLYCOGEN SYNTHASE KINASE-3Î ² <i>IN VITRO</i> PRODUCES SPECIES WITH SIMILAR ELECTROPHORETIC AND IMMUNOGENIC PROPERTIES TO PHF-TAU FROM AIZHEIMERS DISEASE BRAIN. Biochemical Society Transactions, 1995, 23, 45S-45S.	1.6	1
245	Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature, 1995, 374, 617-622.	13.7	471
246	Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature, 1995, 377, 750-754.	13.7	218
247	REGULATION OF NUCLEAR TRANSCRIPTION FACTORS BY STRESS SIGNALS. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 281-283.	0.9	34
248	Ionizing Radiation Stimulates a Grb2-mediated Association of the Stress-activated Protein Kinase with Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1995, 270, 18871-18874.	1.6	65
249	Transforming G Protein-coupled Receptors Potently Activate JNK (SAPK). Journal of Biological Chemistry, 1995, 270, 5620-5624.	1.6	202
250	Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement. Molecular Brain Research, 1995, 34, 1-17.	2.5	61
251	Stimulation of MAP kinase by v-raftransformation of fibroblasts fails to induce hyperphosphorylation of transfected tau. FEBS Letters, 1995, 365, 42-46.	1.3	46
252	The Stress-activated Protein Kinases Annals of the New York Academy of Sciences, 1995, 766, 303-319.	1.8	63

#	Article	IF	CITATIONS
253	Modulation of PHF-like tau phosphorylation in cultured neurones and transfected cells. Neurobiology of Aging, 1995, 16, 389-397.	1.5	41
254	GSK3., 1995, , 231-233.		1
255	Stress-activated protein kinases bind directly to the delta domain of c-Jun in resting cells: implications for repression of c-Jun function. Oncogene, 1995, 10, 849-55.	2.6	93
256	Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature, 1994, 372, 798-800.	13.7	729
257	Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature, 1994, 372, 794-798.	13.7	1,016
258	Arabidopsis homologs of the shaggy and GSK-3 protein kinases: molecular cloning and functional expression in Escherichia coli. Molecular Genetics and Genomics, 1994, 242, 337-345.	2.4	54
259	Nuclear Onco-Protein Targets of Signal Transduction Pathways. Pigment Cell & Melanoma Research, 1994, 7, 96-100.	4.0	6
260	The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 1994, 369, 156-160.	13.7	2,631
261	Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Current Biology, 1994, 4, 1077-1086.	1.8	448
262	Differential Subcellular Localization of Two Isoforms of p70 S6 Protein Kinase. Biochemical and Biophysical Research Communications, 1994, 198, 780-786.	1.0	41
263	PHF-tau from Alzheimer's brain comprises four species on SDS-PAGE which can be mimicked by in vitro phosphorylation of human brain tau by glycogen synthase kinase-3î². FEBS Letters, 1994, 349, 359-364.	1.3	92
264	ATP citrate-lyase and glycogen synthase kinase-3β in 3T3-L1 cells during differentiation into adipocytes. Biochemical Journal, 1994, 300, 477-482.	1.7	42
265	Mitogen inactivation of glycogen synthase kinase-3 <i>β</i> in intact cells via serine 9 phosphorylation. Biochemical Journal, 1994, 303, 701-704.	1.7	554
266	The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. Journal of Biological Chemistry, 1994, 269, 26546-26551.	1.6	237
267	Regulation and functions of the glycogen synthase kinase-3 subfamily. Seminars in Cancer Biology, 1994, 5, 269-75.	4.3	76
268	The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. Journal of Biological Chemistry, 1994, 269, 26546-51.	1.6	187
269	Transcriptional activation by the v-Jun oncoprotein is independent of positive regulatory phosphorylation. Oncogene, 1994, 9, 2363-8.	2.6	17
270	Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene, 1994, 9, 59-70.	2.6	196

#	Article	IF	CITATIONS
271	A kinase with Ku-dos. Current Biology, 1993, 3, 450.	1.8	9
272	Roles of glycogen synthase kinase-3 in signal transduction. Biochemical Society Transactions, 1993, 21, 905-907.	1.6	27
273	A Saccharomyces cerevisiae protein-serine kinase related to mammalian glycogen synthase kinase-3 and the Drosophila melanogaster gene shaggy product. Gene, 1993, 134, 51-56.	1.0	31
274	Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO Journal, 1993, 12, 803-8.	3.5	228
275	Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene, 1993, 8, 833-40.	2.6	163
276	Co-purification of mitogen-activated protein kinases with phorbol ester-induced c-Jun kinase activity in U937 leukaemic cells. Oncogene, 1993, 8, 407-15.	2.6	55
277	Identification of multifunctional ATP-citrate lyase kinase as the α-isoform of glycogen synthase kinase-3. Biochemical Journal, 1992, 288, 309-314.	1.7	123
278	Phorbol ester-induced amino-terminal phosphorylation of human JUN but not JUNB regulates transcriptional activation Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7247-7251.	3.3	101
279	Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase. Neuroscience Letters, 1992, 147, 58-62.	1.0	690
280	Glycogen synthase kinase-3: functions in oncogenesis and development. Biochimica Et Biophysica Acta: Reviews on Cancer, 1992, 1114, 147-162.	3.3	165
281	Finding the stepping stones downstream of ras. Current Biology, 1992, 2, 357-358.	1.8	10
282	Baculovirus-mediated expression and characterisation of rat glycogen synthase kinase-3beta, the mammalian homologue of the Drosophila melanogaster zeste-white 3sgg, homeotic gene product. FEBS Journal, 1992, 203, 305-311.	0.2	56
283	Activation of protein kinase C increases phosphorylation of the L-myc trans-activator domain at a GSK-3 target site. Oncogene, 1992, 7, 347-53.	2.6	52
284	Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. Journal of Biological Chemistry, 1992, 267, 16878-82.	1.6	291
285	Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell, 1991, 64, 573-584.	13.5	1,095
286	A common denominator linking glycogen metabolism, nuclear oncogenes and development. Trends in Biochemical Sciences, 1991, 16, 177-181.	3.7	134
287	Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini Molecular and Cellular Biology, 1991, 11, 5541-5550.	1.1	180
288	[13] Use of synthetic peptides mimicking phosphorylation sites for affinity purification of protein-serine kinases. Methods in Enzymology, 1991, 200, 169-178.	0.4	15

#	Article	IF	CITATIONS
289	Powering the cell cycle. Current Biology, 1991, 1, 106-107.	1.8	3
290	trking neurotrophic receptors. Nature, 1991, 350, 660-661.	13.7	41
291	Phosphorylation of c-jun mediated by MAP kinases. Nature, 1991, 353, 670-674.	13.7	1,454
292	Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. FEBS Journal, 1991, 201, 475-481.	0.2	392
293	[48] cDNA cloning and properties of glycogen synthase kinase-3. Methods in Enzymology, 1991, 200, 564-577.	0.4	105
294	Activation of the cellular transcription factor AP-1 in herpes simplex virus infected cells is dependent on the viral immediate-early protein ICPO. Nucleic Acids Research, 1991, 19, 4879-4883.	6.5	45
295	Phosphorylation of pp60c-src. , 1991, , 25-43.		0
296	Cloning and Expression of Two Human p70 S6 Kinase Polypeptides Differing Only at Their Amino Termini. Molecular and Cellular Biology, 1991, 11, 5541-5550.	1.1	62
297	Molecular cloning and expression of glycogen synthase kinase-3/factor A EMBO Journal, 1990, 9, 2431-2438.	3.5	1,172
298	Studies on the primary sequence requirements for PKC-α, -β1and -γ peptide substrates. FEBS Letters, 1990, 277, 151-155.	1.3	47
299	Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO Journal, 1990, 9, 2431-8.	3.5	491
300	Fos and jun: two into one will go. Seminars in Cancer Biology, 1990, 1, 389-97.	4.3	16
301	Use of peptide substrates for affinity purification of protein-serine kinases. Analytical Biochemistry, 1989, 180, 237-241.	1.1	48
302	Early gene induction by growh factors. British Medical Bulletin, 1989, 45, 529-540.	2.7	18
303	Phorbol Ester-Induced Down-Regulation of Protein Kinase C Abolishes Vasopressin-Mediated Responses in Rat Anterior Pituitary Cells. Molecular Endocrinology, 1987, 1, 555-560.	3.7	58
304	Immunological evidence for two physiological forms of protein kinase C Molecular and Cellular Biology, 1987, 7, 85-96.	1.1	98
305	Protein Kinase C and its Role in Cell Growth. , 1987, , 215-340.		30
306	Immunological Evidence for Two Physiological Forms of Protein Kinase C. Molecular and Cellular Biology, 1987, 7, 85-96.	1.1	27

#	Article	IF	CITATIONS
307	Isolation and characterization of two distinct forms of protein kinase C. Journal of Biological Chemistry, 1987, 262, 4836-43.	1.6	131
308	Regulation of protein kinase C by activators, Ca2+, and phosphorylation. Progress in Clinical and Biological Research, 1987, 249, 237-47.	0.2	1
309	The protein-tyrosine kinase substrate p36 is also a substrate for protein kinase C in vitro and in vivo Molecular and Cellular Biology, 1986, 6, 2738-2744.	1.1	207
310	Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. FEBS Journal, 1986, 161, 177-184.	0.2	489
311	The Protein-Tyrosine Kinase Substrate p36 Is Also a Substrate for Protein Kinase C In Vitro and In Vivo. Molecular and Cellular Biology, 1986, 6, 2738-2744.	1.1	56
312	Multisite phosphorylation of glycogen synthase from rabbit skeletal muscle. Identification of the sites phosphorylated by casein kinase-I. FEBS Journal, 1985, 151, 39-48.	0.2	49
313	Selective effects of CAPP1-calmodulin on its target proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 845, 533-539.	1.9	54
314	Protein kinase C phosphorylates pp60src at a novel site. Cell, 1985, 42, 849-857.	13.5	267
315	Characterization of the sites phosphorylated on tyrosine hydroxylase by Ca2+and phospholipid-dependent protein kinase, calmodulin-dependent multiprotein kinase and cyclic AMP-dependent protein kinase. FEBS Letters, 1985, 182, 335-339.	1.3	93
316	The Molecular Mechanism by Which Insulin Activates Glycogen Synthase in Mammalian Skeletal Muscle. , 1985, , 213-233.		19
317	Substrate specificity of a multifunctional calmodulin-dependent protein kinase Journal of Biological Chemistry, 1985, 260, 14471-14476.	1.6	232
318	Substrate specificity of a multifunctional calmodulin-dependent protein kinase. Journal of Biological Chemistry, 1985, 260, 14471-6.	1.6	151
319	Multisite phosphorylation of glycogen synthase. BBA - Proteins and Proteomics, 1984, 788, 339-347.	2.1	196
320	Comparison of calmodulin-dependent glycogen synthase kinase from skeletal muscle and calmodulin-dependent protein kinase-II from brain. FEBS Letters, 1984, 170, 49-54.	1.3	44
321	Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase Journal of Biological Chemistry, 1984, 259, 13680-13683.	1.6	145
322	Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase. Journal of Biological Chemistry, 1984, 259, 13680-3.	1.6	114
323	The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle. Purification, subunit structure and substrate specificity. FEBS Journal, 1983, 136, 481-487.	0.2	143
324	Evidence that amiloride antagonises insulin-stimulated protein phosphorylation by inhibiting protein kinase activity. FEBS Letters, 1983, 154, 269-273.	1.3	59

#	Article	IF	CITATIONS
325	A multifunctional calmodulin-dependent protein kinase. FEBS Letters, 1983, 163, 329-334.	1.3	129
326	Identification of a calmodulin-dependent glycogen synthase kinase in rabbit skeletal muscle, distinct from phosphorylase kinase. FEBS Letters, 1982, 148, 5-11.	1.3	68
327	Multisite phosphorylation of glycogen synthase from rabbit skeletal muscle. FEBS Letters, 1982, 150, 191-196.	1.3	165
328	Glycogen Synthase Kinase 3: An Introductory Synopsis. , 0, , 1-23.		2
329	Specific Role for GSK3α in Limiting Long-Term Potentiation in CA1 Pyramidal Neurons of Adult Mouse Hippocampus. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	2