
Robert J Marquis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8967471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subtle structures with notâ€soâ€subtle functions: A data set of arthropod constructs and their host plants. Ecology, 2022, 103, e3639.	3.2	2
2	Restoration plantations accelerate dead wood accumulation in tropical premontane forests. Forest Ecology and Management, 2022, 508, 120015.	3.2	0
3	Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Global Change Biology, 2022, 28, 3694-3710.	9.5	12
4	Testing the role of local plant chemical diversity on plant–herbivore interactions and plant species coexistence. Ecology, 2022, 103, .	3.2	9
5	Escape as a Mechanism of Plant Resistance Against Herbivores. , 2021, , 39-57.		5
6	Active modification of cavity nestâ€entrances is a common strategy in arboreal ants. Biotropica, 2021, 53, 857-867.	1.6	6
7	Ecosystem engineering in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia, 2021, 196, 427-439.	2.0	13
8	In remembrance of Victor Rico Gray (1951â€2021): An astonishing tropical ecologist. Biotropica, 2021, 53, 1238-1243.	1.6	0
9	Between predators and parasitoids: Complex interactions among shelter traits, predation and parasitism in a shelterâ€building caterpillar community. Functional Ecology, 2020, 34, 2186-2198.	3.6	18
10	Revisiting ecological dominance in arboreal ants: how dominant usage of nesting resources shapes community assembly. Oecologia, 2020, 194, 151-163.	2.0	11
11	Ontogenetic consistency in oak defence syndromes. Journal of Ecology, 2020, 108, 1822-1834.	4.0	15
12	Geographic variation in performance of a widespread generalist insect herbivore. Ecological Entomology, 2020, 45, 617-625.	2.2	2
13	Triâ€ŧrophic interactions: bridging species, communities and ecosystems. Ecology Letters, 2019, 22, 2151-2167.	6.4	77
14	Declines and Resilience of Communities of Leaf Chewing Insects on Missouri Oaks Following Spring Frost and Summer Drought. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	28
15	Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews, 2018, 93, 845-862.	10.4	183
16	Trade-offs between growth, reproduction and defense in response to resource availability manipulations. PLoS ONE, 2018, 13, e0201873.	2.5	29
17	Comparing the responses of larval and adult lepidopteran communities to timber harvest using long-term, landscape-scale studies in oak-hickory forests. Forest Ecology and Management, 2017, 387, 64-72.	3.2	13
18	Coâ€occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and Evolution, 2016, 6, 8907-8918.	1.9	51

RobertÂJ Marquis

#	Article	IF	CITATIONS
19	The impact of plant chemical diversity on plant–herbivore interactions at the community level. Oecologia, 2016, 181, 1199-1208.	2.0	88
20	Chemical similarity and local community assembly in the species rich tropical genus <i>Piper</i> . Ecology, 2016, 97, 3176-3183.	3.2	66
21	Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology, 2016, 97, 2939-2951.	3.2	52
22	Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161564.	2.6	54
23	Ant Species Identity has a Greater Effect than Fire on the Outcome of an Ant Protection System in <scp>B</scp> razilian <scp>C</scp> errado. Biotropica, 2015, 47, 459-467.	1.6	59
24	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	7.1	454
25	Native leaf-tying caterpillars influence host plant use by the invasive Asiatic oak weevil through ecosystem engineering. Ecology, 2014, 95, 1472-1478.	3.2	11
26	Directed seed dispersal ofPiperbyCarollia perspicillataand its effect on understory plant diversity and folivory. Ecology, 2013, 94, 2444-2453.	3.2	34
27	Herbivore pressure increases toward the equator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12616-12620.	7.1	98
28	Both host plant and ecosystem engineer identity influence leaf-tie impacts on the arthropod community ofQuercus. Ecology, 2012, 93, 2186-2197.	3.2	25
29	Testing the low latitude/high defense hypothesis for broad-leaved tree species. Oecologia, 2012, 169, 811-820.	2.0	38
30	Contextâ€dependent benefits from ant–plant mutualism in three sympatric varieties of <i>Chamaecrista desvauxii</i> . Journal of Ecology, 2012, 100, 242-252.	4.0	41
31	Species richness and niche space for temperate and tropical folivores. Oecologia, 2012, 168, 213-220.	2.0	19
32	Costs of defense: correlated responses to divergent selection for foliar glucosinolate content in Brassica rapa. Evolutionary Ecology, 2011, 25, 763-775.	1.2	33
33	Leaf quality, predators, and stochastic processes in the assembly of a diverse herbivore community. Ecology, 2011, 92, 699-708.	3.2	55
34	Impact of plant architecture versus leaf quality on attack by leaf-tying caterpillars on five oak species. Oecologia, 2010, 163, 203-213.	2.0	31
35	Effects of even-aged and uneven-aged timber management on dung beetle community attributes in a Missouri Ozark forest. Forest Ecology and Management, 2009, 257, 536-545.	3.2	8
36	Timing is everything? Phenological synchrony and population variability in leaf hewing herbivores of <i>Quercus</i> . Ecological Entomology, 2008, 33, 276-285.	2.2	78

RobertÂJ Marquis

#	Article	IF	CITATIONS
37	Dung Beetle (Coleoptera: Scarabaeoidea) Community Response to Clear-cutting in the Missouri Ozarks. Journal of the Kansas Entomological Society, 2007, 80, 146-155.	0.2	2
38	6 Microhabitat manipulation: Ecosystem engineering by shelter-building insects. Theoretical Ecology Series, 2007, 4, 107-138.	0.2	35
39	Ecological consequences of shelter sharing by leaf-tying caterpillars. Entomologia Experimentalis Et Applicata, 2007, 124, 45-53.	1.4	22
40	Impacts of Alternative Timber Harvest Practices on Leaf-Chewing Herbivores of Oak. Conservation Biology, 2006, 20, 429-440.	4.7	24
41	Leaf Pubescence Affects Distribution and Abundance of Generalist Slug Caterpillars (Lepidoptera:) Tj ETQq1 1 0.	.784314 rg 1.4	gBT ₃₈ Overlock
42	Forest Age Influences Oak Insect Herbivore Community Structure, Richness, And Density. , 2006, 16, 901.		1
43	Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology and Evolution, 2005, 20, 441-448.	8.7	679
44	Leaf ties as colonization sites for forest arthropods: an experimental study. Ecological Entomology, 2004, 29, 300-308.	2.2	34
45	ECOLOGY: Herbivores Rule. Science, 2004, 305, 619-621.	12.6	15
46	Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecological Entomology, 2004, 29, 174-187.	2.2	221
47	ECOSYSTEM ENGINEERING BY CATERPILLARS INCREASES INSECT HERBIVORE DIVERSITY ON WHITE OAK. Ecology, 2003, 84, 682-690.	3.2	145
48	Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos, 2002, 99, 531-537.	2.7	72
49	The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia, 2001, 126, 418-428.	2.0	133
50	Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. Journal of Tropical Ecology, 2001, 17, 127-148.	1.1	98
51	EVALUATING THE EFFECTS OF ECOSYSTEM MANAGEMENT: A CASE STUDY IN A MISSOURI OZARK FOREST. , 2001, 11, 1667-1679.		27
52	FITNESS IMPACTS OF HERBIVORY THROUGH INDIRECT EFFECTS ON PLANT–POLLINATOR INTERACTIONS INOENOTHERA MACROCARPA. Ecology, 2000, 81, 30-40.	3.2	223
53	The Evolutionary Ecology of Tolerance to Consumer Damage. Annual Review of Ecology, Evolution, and Systematics, 2000, 31, 565-595.	6.7	551
54	The role of ant-tended extrafloral nectaries in the protection and benefit of a Neotropical rainforest tree. Oecologia, 1999, 118, 192-202.	2.0	108

RobertÂJ Marquis

2.2

8

#	Article	IF	CITATIONS
55	Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecological Entomology, 1999, 24, 46-58.	2.2	75
56	INDUCED DEFENSE IN WHITE OAK: EFFECTS ON HERBIVORES AND CONSEQUENCES FOR THE PLANT. Ecology, 1997, 78, 1356-1369.	3.2	108
57	Plant architecture, sectoriality and plant tolerance to herbivores. Plant Ecology, 1996, 127, 85-97.	1.2	84
58	Leafâ€cutting ant preferences for five native tropical plantation tree species growing under different light conditions. Entomologia Experimentalis Et Applicata, 1996, 80, 521-530.	1.4	35
59	Environmental contribution to floral trait variation in <i>Chamaecrista fasciculata</i> (Fabaceae:) Tj ETQq1 1 0.73	84314 rgB 1.7	T /Qverlock
60	Environmental Contribution to Floral Trait Variation in Chamaecrista fasciculata (Fabaceae:) Tj ETQq0 0 0 rgBT /O	verlock 10 1.7) Tf 50 542 1
61	GENOTYPIC VARIATION IN LEAF DAMAGE IN <i>PIPER ARIEIANUM</i> (PIPERACEAE) BY A MULTISPECIES ASSEMBLAGE OF HERBIVORES. Evolution; International Journal of Organic Evolution, 1990, 44, 104-120.	2.3	82
62	Genotypic Variation in Leaf Damage in Piper arieianum (Piperaceae) by a Multispecies Assemblage of Herbivores. Evolution; International Journal of Organic Evolution, 1990, 44, 104.	2.3	34
63	Phenological Variation in the Neotropical Understory Shrub Piper Arielanum: Causes and Consequences. Ecology, 1988, 69, 1552-1565.	3.2	142

Experimental shelter-switching shows shelter type alters predation on caterpillars (Hesperiidae).
Behavioral Ecology, 0, , .