Robert J Marquis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8967471/publications.pdf

Version: 2024-02-01

64 papers 4,803 citations

33 h-index 59 g-index

66 all docs 66 docs citations

66 times ranked 4886 citing authors

#	Article	IF	CITATIONS
1	Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology and Evolution, 2005, 20, 441-448.	8.7	679
2	The Evolutionary Ecology of Tolerance to Consumer Damage. Annual Review of Ecology, Evolution, and Systematics, 2000, 31, 565-595.	6.7	551
3	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	7.1	454
4	FITNESS IMPACTS OF HERBIVORY THROUGH INDIRECT EFFECTS ON PLANT–POLLINATOR INTERACTIONS INOENOTHERA MACROCARPA. Ecology, 2000, 81, 30-40.	3.2	223
5	Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecological Entomology, 2004, 29, 174-187.	2.2	221
6	Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews, 2018, 93, 845-862.	10.4	183
7	ECOSYSTEM ENGINEERING BY CATERPILLARS INCREASES INSECT HERBIVORE DIVERSITY ON WHITE OAK. Ecology, 2003, 84, 682-690.	3.2	145
8	Phenological Variation in the Neotropical Understory Shrub Piper Arielanum: Causes and Consequences. Ecology, 1988, 69, 1552-1565.	3.2	142
9	The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia, 2001, 126, 418-428.	2.0	133
10	INDUCED DEFENSE IN WHITE OAK: EFFECTS ON HERBIVORES AND CONSEQUENCES FOR THE PLANT. Ecology, 1997, 78, 1356-1369.	3.2	108
11	The role of ant-tended extrafloral nectaries in the protection and benefit of a Neotropical rainforest tree. Oecologia, 1999, 118, 192-202.	2.0	108
12	Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. Journal of Tropical Ecology, 2001, 17, 127-148.	1.1	98
13	Herbivore pressure increases toward the equator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12616-12620.	7.1	98
14	The impact of plant chemical diversity on plant–herbivore interactions at the community level. Oecologia, 2016, 181, 1199-1208.	2.0	88
15	Plant architecture, sectoriality and plant tolerance to herbivores. Plant Ecology, 1996, 127, 85-97.	1.2	84
16	GENOTYPIC VARIATION IN LEAF DAMAGE IN <i>PIPER ARIEIANUM</i> (PIPERACEAE) BY A MULTISPECIES ASSEMBLAGE OF HERBIVORES. Evolution; International Journal of Organic Evolution, 1990, 44, 104-120.	2.3	82
17	Timing is everything? Phenological synchrony and population variability in leafâ€chewing herbivores of <i>Quercus</i> . Ecological Entomology, 2008, 33, 276-285.	2.2	78
18	Triâ€ŧrophic interactions: bridging species, communities and ecosystems. Ecology Letters, 2019, 22, 2151-2167.	6.4	77

#	Article	IF	CITATIONS
19	Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecological Entomology, 1999, 24, 46-58.	2.2	7 5
20	Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos, 2002, 99, 531-537.	2.7	72
21	Chemical similarity and local community assembly in the species rich tropical genus <i>Piper</i> Ecology, 2016, 97, 3176-3183.	3.2	66
22	Ant Species Identity has a Greater Effect than Fire on the Outcome of an Ant Protection System in <scp>B</scp> razilian <scp>C</scp> errado. Biotropica, 2015, 47, 459-467.	1.6	59
23	Leaf quality, predators, and stochastic processes in the assembly of a diverse herbivore community. Ecology, 2011, 92, 699-708.	3.2	55
24	Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161564.	2.6	54
25	Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology, 2016, 97, 2939-2951.	3.2	52
26	Coâ€occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and Evolution, 2016, 6, 8907-8918.	1.9	51
27	Environmental contribution to floral trait variation in <i>Chamaecrista fasciculata</i> (Fabaceae:) Tj ETQq1 1 0.78	34314 rgB ⁻	Γ48verlock
28	Contextâ€dependent benefits from ant–plant mutualism in three sympatric varieties of <i>Chamaecrista desvauxii</i> . Journal of Ecology, 2012, 100, 242-252.	4.0	41
29	Environmental Contribution to Floral Trait Variation in Chamaecrista fasciculata (Fabaceae:) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
30	Leaf Pubescence Affects Distribution and Abundance of Generalist Slug Caterpillars (Lepidoptera:) Tj ETQq0 0 0 rg	gBT_/Overlo	ာင္ရန္ 10 Tf 50
31	Testing the low latitude/high defense hypothesis for broad-leaved tree species. Oecologia, 2012, 169, 811-820.	2.0	38
32	Leafâ€eutting ant preferences for five native tropical plantation tree species growing under different light conditions. Entomologia Experimentalis Et Applicata, 1996, 80, 521-530.	1.4	35
33	6 Microhabitat manipulation: Ecosystem engineering by shelter-building insects. Theoretical Ecology Series, 2007, 4, 107-138.	0.2	35
34	Genotypic Variation in Leaf Damage in Piper arieianum (Piperaceae) by a Multispecies Assemblage of Herbivores. Evolution; International Journal of Organic Evolution, 1990, 44, 104.	2.3	34
35	Leaf ties as colonization sites for forest arthropods: an experimental study. Ecological Entomology, 2004, 29, 300-308.	2.2	34
36	Directed seed dispersal of Piperby Carollia perspicillata and its effect on understory plant diversity and folivory. Ecology, 2013, 94, 2444-2453.	3.2	34

#	Article	IF	Citations
37	Costs of defense: correlated responses to divergent selection for foliar glucosinolate content in Brassica rapa. Evolutionary Ecology, 2011, 25, 763-775.	1.2	33
38	Impact of plant architecture versus leaf quality on attack by leaf-tying caterpillars on five oak species. Oecologia, 2010, 163, 203-213.	2.0	31
39	Trade-offs between growth, reproduction and defense in response to resource availability manipulations. PLoS ONE, 2018, 13, e0201873.	2.5	29
40	Declines and Resilience of Communities of Leaf Chewing Insects on Missouri Oaks Following Spring Frost and Summer Drought. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	28
41	EVALUATING THE EFFECTS OF ECOSYSTEM MANAGEMENT: A CASE STUDY IN A MISSOURI OZARK FOREST. , 2001, 11, 1667-1679.		27
42	Both host plant and ecosystem engineer identity influence leaf-tie impacts on the arthropod community of Quercus. Ecology, 2012, 93, 2186-2197.	3.2	25
43	Impacts of Alternative Timber Harvest Practices on Leaf-Chewing Herbivores of Oak. Conservation Biology, 2006, 20, 429-440.	4.7	24
44	Ecological consequences of shelter sharing by leaf-tying caterpillars. Entomologia Experimentalis Et Applicata, 2007, 124, 45-53.	1.4	22
45	Species richness and niche space for temperate and tropical folivores. Oecologia, 2012, 168, 213-220.	2.0	19
46	Between predators and parasitoids: Complex interactions among shelter traits, predation and parasitism in a shelterâ€building caterpillar community. Functional Ecology, 2020, 34, 2186-2198.	3.6	18
47	ECOLOGY: Herbivores Rule. Science, 2004, 305, 619-621.	12.6	15
48	Ontogenetic consistency in oak defence syndromes. Journal of Ecology, 2020, 108, 1822-1834.	4.0	15
49	Comparing the responses of larval and adult lepidopteran communities to timber harvest using long-term, landscape-scale studies in oak-hickory forests. Forest Ecology and Management, 2017, 387, 64-72.	3.2	13
50	Ecosystem engineering in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia, 2021, 196, 427-439.	2.0	13
51	Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Global Change Biology, 2022, 28, 3694-3710.	9.5	12
52	Native leaf-tying caterpillars influence host plant use by the invasive Asiatic oak weevil through ecosystem engineering. Ecology, 2014, 95, 1472-1478.	3.2	11
53	Revisiting ecological dominance in arboreal ants: how dominant usage of nesting resources shapes community assembly. Oecologia, 2020, 194, 151-163.	2.0	11
54	Testing the role of local plant chemical diversity on plant–herbivore interactions and plant species coexistence. Ecology, 2022, 103, .	3.2	9

RobertÂJ Marquis

#	Article	IF	CITATIONS
55	Effects of even-aged and uneven-aged timber management on dung beetle community attributes in a Missouri Ozark forest. Forest Ecology and Management, 2009, 257, 536-545.	3.2	8
56	Experimental shelter-switching shows shelter type alters predation on caterpillars (Hesperiidae). Behavioral Ecology, $0, \dots$	2.2	8
57	Active modification of cavity nestâ€entrances is a common strategy in arboreal ants. Biotropica, 2021, 53, 857-867.	1.6	6
58	Escape as a Mechanism of Plant Resistance Against Herbivores. , 2021, , 39-57.		5
59	Dung Beetle (Coleoptera: Scarabaeoidea) Community Response to Clear-cutting in the Missouri Ozarks. Journal of the Kansas Entomological Society, 2007, 80, 146-155.	0.2	2
60	Geographic variation in performance of a widespread generalist insect herbivore. Ecological Entomology, 2020, 45, 617-625.	2.2	2
61	Subtle structures with notâ€soâ€subtle functions: A data set of arthropod constructs and their host plants. Ecology, 2022, 103, e3639.	3.2	2
62	Forest Age Influences Oak Insect Herbivore Community Structure, Richness, And Density., 2006, 16, 901.		1
63	In remembrance of Victor Rico Gray (1951â€2021): An astonishing tropical ecologist. Biotropica, 2021, 53, 1238-1243.	1.6	0
64	Restoration plantations accelerate dead wood accumulation in tropical premontane forests. Forest Ecology and Management, 2022, 508, 120015.	3.2	O