Lishuang Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8967245/publications.pdf

Version: 2024-02-01

35	1,174	17 h-index	34
papers	citations		g-index
35	35	35	1394
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual effects of cardamonin/alpinetin and their acrolein adducts on scavenging acrolein and the anti-bacterial activity from <i>Alpinia katsumadai</i> Hayata as a spice in roasted meat. Food and Function, 2022, 13, 7088-7097.	4.6	3
2	Food additive octyl gallate eliminates acrolein and inhibits bacterial growth in oil-rich food. Food Chemistry, 2022, 395, 133546.	8.2	2
3	Comparison of functional and structural properties of ginkgo seed protein dried by spray and freeze process. Journal of Food Science and Technology, 2021, 58, 175-185.	2.8	13
4	The Role of Ultrasound in the Preparation of Zein Nanoparticles/Flaxseed Gum Complexes for the Stabilization of Pickering Emulsion. Foods, 2021, 10, 1990.	4.3	9
5	Interconversion and Acrolein-Trapping Capacity of Cardamonin/Alpinetin and Their Metabolites <i>In Vitro</i> and <i>In Vivo</i> Journal of Agricultural and Food Chemistry, 2021, 69, 11926-11936.	5.2	5
6	Inhibitory Activity on the Formation of Reactive Carbonyl Species in Edible Oil by Synthetic Polyphenol Antioxidants. Journal of Agricultural and Food Chemistry, 2021, 69, 9025-9033.	5.2	8
7	Trapping of Acrolein by Curcumin and the Synergistic Inhibition Effect of Curcumin Combined with Quercetin. Journal of Agricultural and Food Chemistry, 2021, 69, 294-301.	5. 2	12
8	Inhibitory Effect on Acrolein by Cyanidin-3- <i>O</i> -glucoside and Its Acrolein Adducts from the Pigment of Mynica Red. Journal of Agricultural and Food Chemistry, 2021, 69, 11937-11946.	5.2	10
9	Adduct Formation of Acrolein with Cyanidin-3- <i>O</i> -glucoside and Its Degradants/Metabolites during Thermal Processing or <i>In Vivo</i> after Consumption of Red Bayberry. Journal of Agricultural and Food Chemistry, 2021, 69, 13143-13154.	5. 2	4
10	Translating In Vitro Acroleinâ€Trapping Capacities of Tea Polyphenol and Soy Genistein to In Vivo Situation is Mediated by the Bioavailability and Biotransformation of Individual Polyphenols. Molecular Nutrition and Food Research, 2020, 64, 1900274.	3.3	26
11	Trapping Acrolein by Theophylline/Caffeine and Their Metabolites from Green Tea and Coffee in Mice and Humans. Journal of Agricultural and Food Chemistry, 2020, 68, 14471-14479.	5.2	5
12	Trapping Methylglyoxal by Myricetin and Its Metabolites in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 9408-9414.	5.2	25
13	Acrolein-Trapping Mechanism of Theophylline in Green Tea, Coffee, and Cocoa: Speedy and Successful. Journal of Agricultural and Food Chemistry, 2020, 68, 9718-9724.	5. 2	7
14	Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Research International, 2020, 136, 109497.	6.2	54
15	Mechanistic studies of inhibition on acrolein by myricetin. Food Chemistry, 2020, 323, 126788.	8.2	26
16	Scavenging of Acrolein by Food-Grade Antioxidant Propyl Gallate in a Model Reaction System and Cakes. Journal of Agricultural and Food Chemistry, 2019, 67, 8520-8526.	5.2	21
17	Novel Theaflavin-Type Chlorogenic Acid Derivatives Identified in Black Tea. Journal of Agricultural and Food Chemistry, 2018, 66, 3402-3407.	5.2	30
18	A new method to prepare and redefine black tea thearubigins. Journal of Chromatography A, 2018, 1563, 82-88.	3.7	19

#	Article	IF	CITATIONS
19	Trapping of glyoxal by propyl, octyl and dodecyl gallates and their mono-glyoxal adducts. Food Chemistry, 2018, 269, 396-403.	8.2	16
20	Dual effects of propyl gallate and its methylglyoxal adduct on carbonyl stress and oxidative stress. Food Chemistry, 2018, 265, 227-232.	8.2	19
21	Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of $\hat{I}\pm$ -Dicarbonyl Compounds in a Lysine/Glucose Model System. Journal of Agricultural and Food Chemistry, 2017, 65, 2233-2239.	5.2	40
22	Levels and formation of \hat{l}_{\pm} -dicarbonyl compounds in beverages and the preventive effects of flavonoids. Journal of Food Science and Technology, 2017, 54, 2030-2040.	2.8	18
23	Additive Capacity of [6]-Shogaol and Epicatechin To Trap Methylglyoxal. Journal of Agricultural and Food Chemistry, 2017, 65, 8356-8362.	5.2	16
24	Glycation of \hat{l}^2 -lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems. Food Chemistry, 2015, 183, 36-42.	8.2	13
25	Chemical components from the haulm of Artemisia selengensis and the inhibitory effect on glycation of \hat{l}^2 -lactoglobulin. Food and Function, 2015, 6, 1841-1846.	4.6	5
26	Quercetin Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal and Glyoxal. Journal of Agricultural and Food Chemistry, 2014, 62, 12152-12158.	5.2	211
27	Purification, antioxidant activity and antiglycation of polysaccharides from Polygonum multiflorum Thunb. Carbohydrate Polymers, 2014, 99, 765-773.	10.2	93
28	6-Gingerdiols as the Major Metabolites of 6-Gingerol in Cancer Cells and in Mice and Their Cytotoxic Effects on Human Cancer Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 11372-11377.	5.2	45
29	Metabolism of [6]-Shogaol in Mice and in Cancer Cells. Drug Metabolism and Disposition, 2012, 40, 742-753.	3.3	69
30	Protective effects of lotus (Nelumbo nucifera Gaertn) germ oil against carbon tetrachloride-induced injury in mice and cultured PC-12 cells. Food and Chemical Toxicology, 2012, 50, 1447-1453.	3.6	12
31	Genistein Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal. Chemical Research in Toxicology, 2011, 24, 579-586.	3.3	135
32	Chemical components of the roots of Noni (Morinda citrifolia) and their cytotoxic effects. Fìtoterapìâ, 2011, 82, 704-708.	2,2	33
33	Stilbene Glucoside from Polygonum multiflorum Thunb.: A Novel Natural Inhibitor of Advanced Glycation End Product Formation by Trapping of Methylglyoxal. Journal of Agricultural and Food Chemistry, 2010, 58, 2239-2245.	5. 2	96
34	Quantitative Analysis of Ginger Components in Commercial Products Using Liquid Chromatography with Electrochemical Array Detection. Journal of Agricultural and Food Chemistry, 2010, 58, 12608-12614.	5.2	57
35	Selection and optimisation of macroporous resin for separation of stilbene glycoside from <i>Polygonum multiflorum</i> Thunb Journal of Chemical Technology and Biotechnology, 2008, 83, 1422-1427.	3.2	17