Ana Blandino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8965757/publications.pdf

Version: 2024-02-01

304743 377865 2,629 36 22 34 citations h-index g-index papers 39 39 39 3321 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cereal-based fermented foods and beverages. Food Research International, 2003, 36, 527-543.	6.2	759
2	Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics. Journal of Bioscience and Bioengineering, 1999, 88, 686-689.	2.2	258
3	Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochemistry, 2007, 42, 98-101.	3.7	190
4	Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochemistry, 2001, 36, 601-606.	3.7	168
5	Glucose oxidase release from calcium alginate gel capsules. Enzyme and Microbial Technology, 2000, 27, 319-324.	3.2	155
6	Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochemical Engineering Journal, 2005, 26, 100-106.	3.6	131
7	Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresource Technology, 2015, 185, 316-323.	9.6	130
8	Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. Journal of Food Engineering, 2010, 96, 304-308.	5.2	128
9	Polygalacturonase production by Aspergillus awamori on wheat in solid-state fermentation. Applied Microbiology and Biotechnology, 2002, 58, 164-169.	3.6	59
10	Value added products from fermentation of sugars derived from agro-food residues. Trends in Food Science and Technology, 2018, 71, 52-64.	15.1	56
11	Enhance hydrolytic enzymes production by Aspergillus awamori on supplemented grape pomace. Food and Bioproducts Processing, 2012, 90, 72-78.	3.6	55
12	Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace. Brazilian Journal of Microbiology, 2011, 42, 1585-1597.	2.0	54
13	Valorization of grape pomace and orange peels: Improved production of hydrolytic enzymes for the clarification of orange juice. Food and Bioproducts Processing, 2013, 91, 580-586.	3.6	45
14	Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Management and Research, 2019, 37, 149-156.	3.9	45
15	Evaluation of the conditions for the extraction of hydrolitic enzymes obtained by solid state fermentation from grape pomace. Enzyme and Microbial Technology, 2007, 41, 302-306.	3.2	40
16	An Effective Process for Pretreating Rice Husk To Enhance Enzyme Hydrolysis. Industrial & Engineering Chemistry Research, 2014, 53, 10870-10875.	3.7	39
17	Utilisation of whole wheat flour for the production of extracellular pectinases by some fungal strains. Process Biochemistry, 2001, 37, 497-503.	3.7	36
18	Calcium Alginate Gel as Encapsulation Matrix for Coimmobilized Enzyme Systems. Applied Biochemistry and Biotechnology, 2003, 110, 53-60.	2.9	32

#	Article	IF	CITATIONS
19	Orange peels: from byâ€product to resource through lactic acid fermentation. Journal of the Science of Food and Agriculture, 2019, 99, 6761-6767.	3.5	32
20	Applicability of enzymatic extracts obtained by solid state fermentation on grape pomace and orange peels mixtures in must clarification. LWT - Food Science and Technology, 2011, 44, 840-846.	5.2	25
21	Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. Bioresource Technology, 2017, 225, 225-233.	9.6	25
22	Comparative study of alcohol dehydrogenase activity in flor yeast extracts. Biotechnology Letters, 1997, 19, 651-654.	2.2	23
23	Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues. Applied Microbiology and Biotechnology, 2016, 100, 9555-9566.	3. 6	23
24	Status and Perspectives in Bioethanol Production From Sugar Beet., 2019,, 61-79.		22
25	Modelling and simulation of a bienzymatic reaction system co-immobilised within hydrogel-membrane liquid-core capsules. Enzyme and Microbial Technology, 2002, 31, 556-565.	3.2	21
26	Conversion of Exhausted Sugar Beet Pulp into Fermentable Sugars from a Biorefinery Approach. Foods, 2020, 9, 1351.	4.3	14
27	A kinetic model considering the heterogeneous nature of the enzyme hydrolysis of lignocellulosic materials. Biofuels, Bioproducts and Biorefining, 2019, 13, 1044-1056.	3.7	10
28	Effect of culture conditions on the aldehyde dehydrogenase activity of Acetobacter aceti cytoplasmatic extracts. Biotechnology Letters, 1996, 18, 63-68.	2.2	8
29	Valorisation of fungal hydrolysates of exhausted sugar beet pulp for lactic acid production. Journal of the Science of Food and Agriculture, 2021, 101, 4108-4117.	3.5	8
30	Effect of Several Pretreatments on the Lactic Acid Production from Exhausted Sugar Beet Pulp. Foods, 2021, 10, 2414.	4.3	8
31	Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace. Brazilian Journal of Microbiology, 2011, 42, 1585-97.	2.0	8
32	Feasibility of exhausted sugar beet pulp as raw material for lactic acid production. Journal of the Science of Food and Agriculture, 2020, 100, 3036-3045.	3.5	7
33	Immobilization of Cells on Polyurethane Foam. Methods in Biotechnology, 2006, , 357-365.	0.2	7
34	Immobilization of Cells on Polyurethane Foam. Methods in Molecular Biology, 2020, 2100, 407-415.	0.9	3
35	Value-Added Products from Agro-Food Residues. Foods, 2022, 11, 766.	4.3	1
36	Utilization of agroindustrial residues for hydrolytic enzymes production. New Biotechnology, 2014, 31, S209.	4.4	0