
Yitzhak Tor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8965253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 2014, 6, PMC.S14459.	4.6	1,268
2	Fluorescent Analogs of Biomolecular Building Blocks: Design, Properties, and Applications. Chemical Reviews, 2010, 110, 2579-2619.	47.7	749
3	Targeting RNA with Small Molecules. ChemBioChem, 2003, 4, 998-1007.	2.6	198
4	Simple Fluorescent Pyrimidine Analogues Detect the Presence of DNA Abasic Sites. Journal of the American Chemical Society, 2005, 127, 10784-10785.	13.7	194
5	Emissive RNA Alphabet. Journal of the American Chemical Society, 2011, 133, 14912-14915.	13.7	177
6	Conjugated 1,10-Phenanthrolines as Tunable Fluorophores. Angewandte Chemie - International Edition, 1999, 38, 2721-2725.	13.8	175
7	Surfen, a small molecule antagonist of heparan sulfate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13075-13080.	7.1	152
8	Fluorescent Pyrimidine Ribonucleotide:Â Synthesis, Enzymatic Incorporation, and Utilization. Journal of the American Chemical Society, 2007, 129, 2044-2053.	13.7	149
9	Cellular Uptake of Aminoglycosides, Guanidinoglycosides, and Poly-arginine. Journal of the American Chemical Society, 2003, 125, 12374-12375.	13.7	143
10	Targeting heparin and heparan sulfate protein interactions. Organic and Biomolecular Chemistry, 2017, 15, 5656-5668.	2.8	128
11	Furan decorated nucleoside analogues as fluorescent probes: synthesis, photophysical evaluation, and site-specific incorporation. Tetrahedron, 2007, 63, 3515-3527.	1.9	118
12	Deciphering RNA recognition: aminoglycoside binding to the hammerhead ribozyme. Chemistry and Biology, 1998, 5, R277-R283.	6.0	117
13	Antibiotics that target protein synthesis. Wiley Interdisciplinary Reviews RNA, 2011, 2, 209-232.	6.4	111
14	Conformational Constraint as a Means for Understanding RNA-Aminoglycoside Specificity. Journal of the American Chemical Society, 2005, 127, 9818-9829.	13.7	104
15	Guanidinoglycosides:  A Novel Family of RNA Ligands. Journal of the American Chemical Society, 2000, 122, 12035-12036.	13.7	103
16	Synthesis and Anti-HIV Activity of Guanidinoglycosides. Journal of Organic Chemistry, 2000, 65, 9054-9058.	3.2	96
17	Emissive Nucleosides as Molecular Rotors. ChemPhysChem, 2011, 12, 567-570.	2.1	94
18	Designing Novel RNA Binders. Chemistry - A European Journal, 1998, 4, 2091-2098.	3.3	92

#	Article	IF	CITATIONS
19	Effect of solvents on the chemical and physical properties of ionic polymer-metal composites. Journal of Applied Physics, 2006, 99, 104902.	2.5	92
20	Molecular Recognition of RNA by Neomycin and a Restricted Neomycin Derivative. Angewandte Chemie - International Edition, 2005, 44, 5329-5334.	13.8	79
21	FRET Enabled Real Time Detection of RNA-Small Molecule Binding. Journal of the American Chemical Society, 2009, 131, 17605-17614.	13.7	79
22	Chemical Mutagenesis of an Emissive RNA Alphabet. Journal of the American Chemical Society, 2015, 137, 14602-14605.	13.7	79
23	RNA and the Small Molecule World. Angewandte Chemie - International Edition, 1999, 38, 1579-1582.	13.8	77
24	Polarity of Major Grooves Explored by Using an Isosteric Emissive Nucleoside. ChemBioChem, 2008, 9, 706-709.	2.6	74
25	On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution. Israel Journal of Chemistry, 2013, 53, 469-483.	2.3	72
26	On Guanidinium and Cellular Uptake. Journal of Organic Chemistry, 2014, 79, 6766-6774.	3.2	71
27	RNA–Aminoglycoside Interactions: Design, Synthesis, and Binding of "Amino-aminoglycosides―to RNA. Angewandte Chemie - International Edition, 1998, 37, 109-111.	13.8	70
28	Guanidinylated Neomycin Delivers Large, Bioactive Cargo into Cells through a Heparan Sulfate-dependent Pathway. Journal of Biological Chemistry, 2007, 282, 13585-13591.	3.4	69
29	A Highly Emissive Fluorescent Nucleoside that Signals the Activity of Toxic Ribosomeâ€Inactivating Proteins. Angewandte Chemie - International Edition, 2008, 47, 6661-6665.	13.8	66
30	Conquering 2-Aminopurine's Deficiencies: Highly Emissive Isomorphic Guanosine Surrogate Faithfully Monitors Guanosine Conformation and Dynamics in DNA. Journal of the American Chemical Society, 2015, 137, 3185-3188.	13.7	60
31	To D or not to D? : On estimating the microenvironment polarity of biomolecular cavities. Organic and Biomolecular Chemistry, 2007, 5, 2523.	2.8	59
32	A highly fluorescent nucleoside analog based on thieno[3,4-d]pyrimidine senses mismatched pairing. Organic and Biomolecular Chemistry, 2008, 6, 1334.	2.8	57
33	Fluorescent Ribonucleoside as a FRET Acceptor for Tryptophan in Native Proteins. Journal of the American Chemical Society, 2010, 132, 11896-11897.	13.7	55
34	An Emissive C Analog Distinguishes between G, 8-oxoG, and T. Organic Letters, 2009, 11, 1115-1118.	4.6	52
35	Expanding a fluorescent RNA alphabet: synthesis, photophysics and utility of isothiazole-derived purine nucleoside surrogates. Chemical Science, 2017, 8, 2983-2993.	7.4	48
36	Enzymatic Incorporation of Emissive Pyrimidine Ribonucleotides. Chemistry - an Asian Journal, 2009, 4, 419-427.	3.3	46

#	Article	IF	CITATIONS
37	RNA as a target for small-molecule therapeutics. Expert Opinion on Therapeutic Patents, 2005, 15, 49-62.	5.0	45
38	Dynamics of Methylated Cytosine Flipping by UHRF1. Journal of the American Chemical Society, 2017, 139, 2520-2528.	13.7	44
39	Isomorphic Emissive GTP Surrogate Facilitates Initiation and Elongation of in Vitro Transcription Reactions. Journal of the American Chemical Society, 2014, 136, 15176-15184.	13.7	41
40	Using an emissive uridine analogue for assembling fluorescent HIV-1 TAR constructs. Tetrahedron, 2007, 63, 3601-3607.	1.9	38
41	Enzymatic Interconversion of Isomorphic Fluorescent Nucleosides: Adenosine Deaminase Transforms an Adenosine Analogue into an Inosine Analogue. Angewandte Chemie - International Edition, 2013, 52, 14026-14030.	13.8	38
42	Multisensing Emissive Pyrimidine. ChemPhysChem, 2011, 12, 2260-2265.	2.1	37
43	Tautomers of a Fluorescent G Surrogate and Their Distinct Photophysics Provide Additional Information Channels. Angewandte Chemie - International Edition, 2016, 55, 7974-7978.	13.8	36
44	Oligo-ligandosides: a DNA mimetic approach to helicate formation. Chemical Communications, 2001, , 453-454.	4.1	35
45	Dendrimers and chirality. Chirality, 1998, 10, 53-59.	2.6	33
46	Guanidinylated Neomycin Mediates Heparan Sulfate–dependent Transport of Active Enzymes to Lysosomes. Molecular Therapy, 2010, 18, 1268-1274.	8.2	32
47	Visibly Emissive and Responsive Extended 6-Aza-Uridines. Organic Letters, 2014, 16, 5290-5293.	4.6	32
48	Polymeraseâ€Mediated Siteâ€Specific Incorporation of a Synthetic Fluorescent Isomorphic G Surrogate into RNA. Angewandte Chemie - International Edition, 2017, 56, 1303-1307.	13.8	32
49	A Fluorescent Adenosine Analogue as a Substrate for an Aâ€ŧoâ€ŧ RNA Editing Enzyme. Angewandte Chemie - International Edition, 2015, 54, 8713-8716.	13.8	30
50	Cooperative, Heparan Sulfateâ€Đependent Cellular Uptake of Dimeric Guanidinoglycosides. ChemBioChem, 2010, 11, 2302-2310.	2.6	29
51	Modified 6â€Aza Uridines: Highly Emissive pH ensitive Fluorescent Nucleosides. ChemPhysChem, 2012, 13, 3350-3356.	2.1	29
52	Oligodeoxynucleotides Containing Multiple Thiophene-Modified Isomorphic Fluorescent Nucleosides. Journal of Organic Chemistry, 2013, 78, 8123-8128.	3.2	29
53	What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe?. Journal of the American Chemical Society, 2020, 142, 16999-17014.	13.7	27
54	Monitoring Translation with Modified mRNAs Strategically Labeled with Isomorphic Fluorescent Guanosine Mimetics. ACS Chemical Biology, 2013, 8, 2017-2023.	3.4	26

#	Article	IF	CITATIONS
55	Surfen and oxalyl surfen decrease tau hyperphosphorylation and mitigate neuron deficits in vivo in a zebrafish model of tauopathy. Translational Neurodegeneration, 2018, 7, 6.	8.0	26
56	Metal-containing DNA hairpins as hybridization probes. Chemical Communications, 2001, , 549-550.	4.1	25
57	Hydrolytic fitness of <i>N</i> â€glycosyl bonds: comparing the deglycosylation kinetics of modified, alternative, and native nucleosides. Journal of Physical Organic Chemistry, 2015, 28, 173-180.	1.9	24
58	Emissive Synthetic Cofactors: Enzymatic Interconversions of ^{tz} A Analogues of ATP, NAD ⁺ , NADH, NADP ⁺ , and NADPH. Angewandte Chemie - International Edition, 2018, 57, 1087-1090.	13.8	24
59	Emissive Synthetic Cofactors: An Isomorphic, Isofunctional, and Responsive NAD ⁺ Analogue. Journal of the American Chemical Society, 2017, 139, 15556-15559.	13.7	22
60	Small molecule antagonists of cell-surface heparan sulfate and heparin–protein interactions. Chemical Science, 2015, 6, 5984-5993.	7.4	21
61	Exploring RNA-ligand interactions. Pure and Applied Chemistry, 2009, 81, 263-272.	1.9	20
62	Aggregation-Mediated Macromolecular Uptake by a Molecular Transporter. ACS Chemical Biology, 2013, 8, 1383-1388.	3.4	20
63	Environmentally Sensitive Fluorescent Nucleoside Analogues for Surveying Dynamic Interconversions of Nucleic Acid Structures. Chemistry - A European Journal, 2018, 24, 13850-13861.	3.3	20
64	GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery. ACS Nano, 2015, 9, 3961-3968.	14.6	17
65	Single-Molecule Detection of a Fluorescent Nucleobase Analogue via Multiphoton Excitation. Journal of Physical Chemistry Letters, 2019, 10, 5008-5012.	4.6	16
66	Cellular activity of siRNA oligonucleotides containing synthetic isomorphic nucleoside surrogates. Chemical Communications, 2015, 51, 1662-1665.	4.1	15
67	Twoâ€Photonâ€Induced Fluorescence of Isomorphic Nucleobase Analogs. ChemPhysChem, 2014, 15, 867-871.	2.1	14
68	Modification of oligodeoxynucleotides by on-column Suzuki cross-coupling reactions. Chemical Communications, 2018, 54, 8003-8006.	4.1	14
69	Genome-wide screens uncover KDM2B as a modifier of protein binding to heparan sulfate. Nature Chemical Biology, 2021, 17, 684-692.	8.0	14
70	Deciphering the pH-dependence of ground- and excited-state equilibria of thienoguanine. Physical Chemistry Chemical Physics, 2020, 22, 7381-7391.	2.8	13
71	Emissive Synthetic Cofactors: A Highly Responsive NAD ⁺ Analogue Reveals Biomolecular Recognition Features. Chemistry - A European Journal, 2019, 25, 4379-4389.	3.3	12
72	Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition. Organic and Biomolecular Chemistry, 2020, 18, 7213-7223.	2.8	12

#	Article	IF	CITATIONS
73	Tautomers of a Fluorescent G Surrogate and Their Distinct Photophysics Provide Additional Information Channels. Angewandte Chemie, 2016, 128, 8106-8110.	2.0	11
74	Chromophoric Nucleoside Analogues: Synthesis and Characterization of 6-Aminouracil-Based Nucleodyes. Journal of Organic Chemistry, 2016, 81, 4530-4539.	3.2	10
75	Delivery of an active lysosomal enzyme using GNeosomes. Journal of Materials Chemistry B, 2016, 4, 5794-5797.	5.8	10
76	Application of Surface Click Reactions to Localized Surface Plasmon Resonance (LSPR) Biosensing. Chemistry - A European Journal, 2017, 23, 10148-10155.	3.3	10
77	Polymeraseâ€Mediated Siteâ€Specific Incorporation of a Synthetic Fluorescent Isomorphic G Surrogate into RNA. Angewandte Chemie, 2017, 129, 1323-1327.	2.0	10
78	Guanidinylated Neomycin Conjugation Enhances Intranasal Enzyme Replacement in the Brain. Molecular Therapy, 2017, 25, 2743-2752.	8.2	10
79	Enzymatic Syntheses and Applications of Fluorescent Cyclic Dinucleotides. Chemistry - A European Journal, 2020, 26, 6076-6084.	3.3	10
80	Neomycin B-cyclen conjugates and their Zn(II) complexes as RNA-binding agents. Journal of Inorganic Biochemistry, 2016, 162, 334-342.	3.5	9
81	Fluorescing Isofunctional Ribonucleosides: Assessing Adenosine Deaminase Activity and Inhibition. ChemBioChem, 2019, 20, 718-726.	2.6	9
82	Real-Time Monitoring of Human Guanine Deaminase Activity by an Emissive Guanine Analog. ACS Chemical Biology, 2021, 16, 1208-1214.	3.4	9
83	Dendrimeric Guanidinoneomycin for Cellular Delivery of Bioâ€macromolecules. ChemBioChem, 2017, 18, 119-125.	2.6	8
84	Emissive Synthetic Cofactors: Enzymatic Interconversions of ^{tz} A Analogues of ATP, NAD ⁺ , NADH, NADP ⁺ , and NADPH. Angewandte Chemie, 2018, 130, 1099-1102.	2.0	8
85	ldentification of Adenosine Deaminase Inhibitors by Metalâ€binding Pharmacophore Screening. ChemMedChem, 2020, 15, 2151-2156.	3.2	8
86	Isomorphic Fluorescent Nucleosides Facilitate Realâ€īme Monitoring of RNA Depurination by Ribosome Inactivating Proteins. Chemistry - A European Journal, 2022, 28, .	3.3	8
87	Multicomponent Domino Synthesis and Antibacterial Activity of Neomycin–Sugar Conjugates. Synthesis, 2016, 48, 4443-4450.	2.3	7
88	Polymyxins facilitate entry into mammalian cells. Chemical Science, 2016, 7, 5059-5068.	7.4	6
89	Delivery of Cargo to Lysosomes Using GNeosomes. Methods in Molecular Biology, 2017, 1594, 151-163.	0.9	6
90	Enzymatic incorporation and utilization of an emissive 6-azauridine. Organic and Biomolecular Chemistry, 2017, 15, 684-690.	2.8	6

#	Article	IF	CITATIONS
91	Fluorescent Probes for Monitoring Serine Ubiquitination. Biochemistry, 2020, 59, 1309-1313.	2.5	6
92	Tuning the Innate Immune Response to Cyclic Dinucleotides by Using Atomic Mutagenesis. ChemBioChem, 2020, 21, 2595-2598.	2.6	6
93	A New Variant of Emissive RNA Alphabets. Chemistry - A European Journal, 2022, 28, .	3.3	6
94	Azetidinesâ€Containing Fluorescent Purine Analogs: Synthesis and Photophysical Properties. Chemistry - A European Journal, 2022, , .	3.3	6
95	Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position. Molecules, 2017, 22, 1427.	3.8	5
96	Cytidine deaminase can deaminate fused pyrimidine ribonucleosides. Organic and Biomolecular Chemistry, 2021, 19, 6237-6243.	2.8	5
97	Thienoguanosine, a unique non-perturbing reporter for investigating rotational dynamics of DNA duplexes and their complexes with proteins. International Journal of Biological Macromolecules, 2022, 213, 210-225.	7.5	5
98	Ascertaining the activity and inhibition of adenosine deaminase via fluorescence-based assays. Methods in Enzymology, 2020, 639, 71-90.	1.0	4
99	Calixarene-decorated liposomes for intracellular cargo delivery. Organic and Biomolecular Chemistry, 2021, 19, 6598-6602.	2.8	4
100	Cellular uptake of modified aminoglycosides. Journal of Antibiotics, 2018, 71, 142-145.	2.0	3
101	Guanidinoneomycin-maleimide molecular transporter: synthesis, chemistry and cellular uptake. Organic and Biomolecular Chemistry, 2021, 19, 6513-6520.	2.8	2
102	Synthesis of unique spirocyclic orthoester-type derivatives of isothiazolo[4,3-d]pyrimidine nucleosides. Journal of Antibiotics, 2018, 71, 342-344.	2.0	1
103	FRET Assay for Ligands Targeting the Bacterial A-Site RNA. Methods in Molecular Biology, 2019, 1973, 251-260.	0.9	1
104	RNA–Aminoglycoside Interactions: Design, Synthesis, and Binding of "Amino-aminoglycosides―to RNA. Angewandte Chemie - International Edition, 1998, 37, 109-111.	13.8	1
105	Targeting HIV RNA with Small Molecules. , 0, , 18-40.		0
106	Inside Cover: Multisensing Emissive Pyrimidine (ChemPhysChem 12/2011). ChemPhysChem, 2011, 12, 2190-2190.	2.1	0
107	50 years of physical organic chemistry. Journal of Physical Organic Chemistry, 2015, 28, 172-172.	1.9	0
108	Naturally Occurring and Synthetic Fluorescent Biomolecular Building Blocks. , 2016, , 15-39.		0

0

#	Article	IF	CITATIONS
109	Design and Photophysics of Environmentally Sensitive Isomorphic Fluorescent Nucleosides. , 2016, , 276-296.		0

110 Fluorescence Spectroscopy. , 0, , 1-14.