
Peggy A Cotter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8965067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DegP Initiates Regulated Processing of Filamentous Hemagglutinin in Bordetella bronchiseptica. MBio, 2021, 12, e0146521.	4.1	6
2	Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex. Cell Host and Microbe, 2020, 28, 534-547.e3.	11.0	34
3	My Experience with SARS-CoV-2, with a Focus on Testing. Journal of Clinical Microbiology, 2020, 58, .	3.9	0
4	The BvgS PAS Domain, an Independent Sensory Perception Module in the <i>Bordetella bronchiseptica</i> BvgAS Phosphorelay. Journal of Bacteriology, 2019, 201, .	2.2	10
5	CDI/CDS system-encoding genes of Burkholderia thailandensis are located in a mobile genetic element that defines a new class of transposon. PLoS Genetics, 2019, 15, e1007883.	3.5	9
6	Regulated, sequential processing by multiple proteases is required for proper maturation and release of <i>Bordetella</i> filamentous hemagglutinin. Molecular Microbiology, 2019, 112, 820-836.	2.5	15
7	<i>Bordetella</i> Filamentous Hemagglutinin, a Model for the Two-Partner Secretion Pathway. Microbiology Spectrum, 2019, 7, .	3.0	18
8	Bordetella Filamentous Hemagglutinin, a Model for the Two-Partner Secretion Pathway. , 2019, , 319-328.		1
9	Three Distinct Contact-Dependent Growth Inhibition Systems Mediate Interbacterial Competition by the Cystic Fibrosis Pathogen Burkholderia dolosa. Journal of Bacteriology, 2018, 200, .	2.2	19
10	Are CDI Systems Multicolored, Facultative, Helping Greenbeards?. Trends in Microbiology, 2017, 25, 391-401.	7.7	38
11	<i>Bordetella</i> PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1519-E1527.	7.1	37
12	<i>Bordetella</i> adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation <i>in vitro</i> . Molecular Microbiology, 2017, 103, 214-228.	2.5	22
13	<i>Burkholderia thailandensis</i> : Growth and Laboratory Maintenance. Current Protocols in Microbiology, 2016, 42, 4C.1.1-4C.1.7.	6.5	2
14	Interbacterial signaling via <i>Burkholderia</i> contact-dependent growth inhibition system proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8296-8301.	7.1	94
15	Cooperative Roles for Fimbria and Filamentous Hemagglutinin in <i>Bordetella</i> Adherence and Immune Modulation. MBio, 2015, 6, e00500-15.	4.1	26
16	New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in <i>Bordetella</i> Virulence. MBio, 2015, 6, .	4.1	28
17	<i>Bordetella</i> filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathogens and Disease, 2015, 73, ftv079.	2.0	53
18	Kind Discrimination and Competitive Exclusion Mediated by Contact-Dependent Growth Inhibition Systems Shape Biofilm Community Structure. PLoS Pathogens, 2014, 10, e1004076.	4.7	68

PEGGY A COTTER

#	Article	IF	CITATIONS
19	Bordetella pertussis pathogenesis: current and future challenges. Nature Reviews Microbiology, 2014, 12, 274-288.	28.6	279
20	Evidence for phenotypic bistability resulting from transcriptional interference of <scp><i>bvgAS</i></scp> in <i><scp>B</scp>ordetella bronchiseptica</i> . Molecular Microbiology, 2013, 90, 716-733.	2.5	14
21	<scp><i>B</i></scp> <i>urkholderia</i> â€ <scp>BcpA</scp> mediates biofilm formation independently of interbacterial contactâ€dependent growth inhibition. Molecular Microbiology, 2013, 89, 1213-1225.	2.5	75
22	Caspase-11 Protects Against Bacteria That Escape the Vacuole. Science, 2013, 339, 975-978.	12.6	456
23	Discovery of Inhibitors of <i>Burkholderia pseudomallei</i> Methionine Aminopeptidase with Antibacterial Activity. ACS Medicinal Chemistry Letters, 2013, 4, 699-703.	2.8	21
24	Characterization of BcaA, a Putative Classical Autotransporter Protein in Burkholderia pseudomallei. Infection and Immunity, 2013, 81, 1121-1128.	2.2	16
25	An Improved Recombination-BasedIn VivoExpression Technology-Like Reporter System Reveals DifferentialcyaAGene Activation in Bordetella Species. Infection and Immunity, 2013, 81, 1295-1305.	2.2	8
26	Functional Characterization of Burkholderia pseudomallei Trimeric Autotransporters. Infection and Immunity, 2013, 81, 2788-2799.	2.2	22
27	The Burkholderia bcpAIOB Genes Define Unique Classes of Two-Partner Secretion and Contact Dependent Growth Inhibition Systems. PLoS Genetics, 2012, 8, e1002877.	3.5	100
28	Contribution of Bordetella Filamentous Hemagglutinin and Adenylate Cyclase Toxin to Suppression and Evasion of Interleukin-17-Mediated Inflammation. Infection and Immunity, 2012, 80, 2061-2075.	2.2	56
29	<scp>NaxD</scp> is a deacetylase required for lipid <scp>A</scp> modification and <i><scp>F</scp>rancisella</i> pathogenesis. Molecular Microbiology, 2012, 86, 611-627.	2.5	36
30	The prodomain of the <i><scp>B</scp>ordetella</i> twoâ€partner secretion pathway protein <scp>FhaB</scp> remains intracellular yet affects the conformation of the mature <scp>C</scp> â€terminal domain. Molecular Microbiology, 2012, 86, 988-1006.	2.5	22
31	Molecular syringes scratch the surface. Nature, 2011, 475, 301-303.	27.8	14
32	A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature, 2010, 468, 439-442.	27.8	292
33	Pertactin Is Required for <i>Bordetella </i> Species To Resist Neutrophil-Mediated Clearance. Infection and Immunity, 2010, 78, 2901-2909.	2.2	108
34	Type VI Secretion: Not Just for Pathogenesis Anymore. Cell Host and Microbe, 2010, 8, 2-6.	11.0	207
35	Naturalâ€host animal models indicate functional interchangeability between the filamentous haemagglutinins of <i>Bordetella pertussis</i> and <i>Bordetella bronchiseptica</i> and reveal a role for the mature Câ€ŧerminal domain, but not the RGD motif, during infection. Molecular Microbiology, 2009. 71. 1574-1590.	2.5	45
36	Laboratory Maintenance of <i>Bordetella pertussis</i> . Current Protocols in Microbiology, 2009, 15, Unit 4B.1.	6.5	15

PEGGY A COTTER

#	Article	IF	CITATIONS
37	Serendipitous Discovery of an Immunoglobulin-Binding Autotransporter in <i>Bordetella</i> Species. Infection and Immunity, 2008, 76, 2966-2977.	2.2	14
38	Autoregulation Is Essential for Precise Temporal and Steady-State Regulation by the Bordetella BvgAS Phosphorelay. Journal of Bacteriology, 2007, 189, 1974-1982.	2.2	31
39	New insight into the molecular mechanisms of two-partner secretion. Trends in Microbiology, 2007, 15, 508-515.	7.7	65
40	Microbial Pathogenesis: Mechanisms of Infectious Disease. Cell Host and Microbe, 2007, 2, 214-219.	11.0	12
41	c-di-GMP-mediated regulation of virulence and biofilm formation. Current Opinion in Microbiology, 2007, 10, 17-23.	5.1	286
42	Topology and maturation of filamentous haemagglutinin suggest a new model for twoâ€partner secretion. Molecular Microbiology, 2006, 62, 641-654.	2.5	73
43	Role of BvgA phosphorylation and DNA binding affinity in control of Bvg-mediated phenotypic phase transition inBordetella pertussis. Molecular Microbiology, 2005, 58, 700-713.	2.5	37
44	Evaluation of the Role of the Bvg Intermediate Phase in Bordetella pertussis during Experimental Respiratory Infection. Infection and Immunity, 2005, 73, 748-760.	2.2	50
45	Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18578-18583.	7.1	83
46	Characterization of the Filamentous Hemagglutinin-Like Protein FhaS in Bordetella bronchiseptica. Infection and Immunity, 2005, 73, 4960-4971.	2.2	31
47	BvgA functions as both an activator and a repressor to control Bvgi phase expression of bipA in Bordetella pertussis. Molecular Microbiology, 2005, 56, 175-188.	2.5	40
48	Phosphorelay control of virulence gene expression in Bordetella. Trends in Microbiology, 2003, 11, 367-373.	7.7	163
49	Comparison of bipA Alleles within and across Bordetella Species. Infection and Immunity, 2003, 71, 3043-3052.	2.2	21
50	Comparative Phenotypic Analysis of the Bordetella parapertussis Isolate Chosen for Genomic Sequencing. Infection and Immunity, 2002, 70, 3777-3784.	2.2	47
51	Reverse Transcriptase-Mediated Tropism Switching in <i>Bordetella</i> Bacteriophage. Science, 2002, 295, 2091-2094.	12.6	247
52	Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Molecular Microbiology, 2001, 39, 65-78.	2.5	105
53	Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Molecular Microbiology, 2001, 40, 669-683.	2.5	75
54	Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Molecular Microbiology, 2000, 35, 991-1004.	2.5	156

PEGGY A COTTER

#	Article	IF	CITATIONS
55	Role of Bordetella bronchiseptica Fimbriae in Tracheal Colonization and Development of a Humoral Immune Response. Infection and Immunity, 2000, 68, 2024-2033.	2.2	84
56	Prolonged Afebrile Nonproductive Cough Illnesses in American Soldiers in Korea: A Serological Search for Causation. Clinical Infectious Diseases, 2000, 30, 534-539.	5.8	80
57	Multiple Roles for Bordetella Lipopolysaccharide Molecules during Respiratory Tract Infection. Infection and Immunity, 2000, 68, 6720-6728.	2.2	113
58	Bacterial Virulence Gene Regulation: An Evolutionary Perspective. Annual Review of Microbiology, 2000, 54, 519-565.	7.3	146
59	Pregenomic Comparative Analysis between <i>Bordetella bronchiseptica</i> RB50 and <i>Bordetella pertussis</i> Tohama I in Murine Models of Respiratory Tract Infection. Infection and Immunity, 1999, 67, 6109-6118.	2.2	88
60	Probing the Function of <i>Bordetella bronchiseptica</i> Adenylate Cyclase Toxin by Manipulating Host Immunity. Infection and Immunity, 1999, 67, 1493-1500.	2.2	126
61	In vivo and ex vivo regulation of bacterial virulence gene expression. Current Opinion in Microbiology, 1998, 1, 17-26.	5.1	47
62	Filamentous Hemagglutinin of <i>Bordetella bronchiseptica</i> Is Required for Efficient Establishment of Tracheal Colonization. Infection and Immunity, 1998, 66, 5921-5929.	2.2	141
63	Neither the Bvg ^{â^²} Phase nor the <i>vrg6</i> Locus of <i>Bordetella pertussis</i> Is Required for Respiratory Infection in Mice. Infection and Immunity, 1998, 66, 2762-2768.	2.2	86
64	A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvgâ€regulated antigens. Molecular Microbiology, 1997, 24, 671-685.	2.5	173
65	Aerobic regulation of cytochrome <i>d</i> oxidase (<i>cydAB</i>) operon expression in <i>Escherichia coli</i> : roles of Fnr and ArcA in repression and activation. Molecular Microbiology, 1997, 25, 605-615.	2.5	125
66	Genetic Analysis of the Bordetella-Host Interaction. Annals of the New York Academy of Sciences, 1996, 797, 65-76.	3.8	4
67	Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. Molecular Microbiology, 1996, 22, 895-908.	2.5	109
68	Genetic Regulation of Airway Colonization by <i>Bordetella</i> Species. American Journal of Respiratory and Critical Care Medicine, 1996, 154, S150-S154.	5.6	11
69	Ectopic expression of the flagellar regulon alters development of the bordetella-host interaction. Cell, 1995, 80, 611-620.	28.9	251
70	Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiology Letters, 1992, 91, 31-36.	1.8	119
71	Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiology Letters, 1992, 91, 31-36.	1.8	66
72	The effect of iron limitation on expression of the aerobic and anaerobic electron transport pathway genes in Escherichia coli. FEMS Microbiology Letters, 1992, 100, 227-232.	1.8	12