Klára Kosová

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8964193/publications.pdf

Version: 2024-02-01

257450 289244 2,820 43 24 40 citations g-index h-index papers 43 43 43 3563 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plant proteome changes under abiotic stress — Contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 2011, 74, 1301-1322.	2.4	700
2	Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. Frontiers in Plant Science, $2018, 9, 122$.	3.6	240
3	Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Journal of Plant Physiology, 2012, 169, 567-576.	3.5	209
4	The role of dehydrins in plant response to cold. Biologia Plantarum, 2007, 51, 601-617.	1.9	188
5	Protein Contribution to Plant Salinity Response and Tolerance Acquisition. International Journal of Molecular Sciences, 2013, 14, 6757-6789.	4.1	170
6	Wheat and barley dehydrins under cold, drought, and salinity ââ,¬â€œ what can LEA-II proteins tell us about plant stress response?. Frontiers in Plant Science, 2014, 5, 343.	3.6	134
7	Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective. International Journal of Molecular Sciences, 2015, 16, 20913-20942.	4.1	125
8	Proteome Analysis of Cold Response in Spring and Winter Wheat (<i>Triticum aestivum</i>) Crowns Reveals Similarities in Stress Adaptation and Differences in Regulatory Processes between the Growth Habits. Journal of Proteome Research, 2013, 12, 4830-4845.	3.7	102
9	Proteomics of stress responses in wheat and barleyââ,¬â€search for potential protein markers of stress tolerance. Frontiers in Plant Science, 2014, 5, 711.	3.6	95
10	Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during longâ€term cold acclimation. Proteomics, 2012, 12, 68-85.	2.2	71
11	Plant proteome responses to salinity stress – comparison of glycophytes and halophytes. Functional Plant Biology, 2013, 40, 775.	2.1	67
12	The relationship between vernalization-and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biologia Plantarum, 2008, 52, 601-615.	1.9	55
13	Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). Journal of Plant Physiology, 2008, 165, 1142-1151.	3.5	53
14	Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Frontiers in Plant Science, 2015, 6, 479.	3.6	53
15	Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. Frontiers in Plant Science, 2016, 07, 1154.	3.6	51
16	Proteins Involved in Distinct Phases of Cold Hardening Process in Frost Resistant Winter Barley (Hordeum vulgare L.) cv Luxor. International Journal of Molecular Sciences, 2013, 14, 8000-8024.	4.1	43
17	Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Environmental and Experimental Botany, 2014, 101, 12-25.	4.2	42
18	Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. Journal of Proteomics, 2017, 152, 188-205.	2.4	39

#	Article	IF	CITATIONS
19	Breeding for enhanced drought resistance in barley and wheat - drought-associated traits, genetic resources and their potential utilization in breeding programmes. Czech Journal of Genetics and Plant Breeding, 2014, 50, 247-261.	0.8	36
20	Accumulation of WCS120 protein in wheat cultivars grown at 9°C or 17°C in relation to their winter survival. Plant Breeding, 2010, 129, 611-616.	1.9	34
21	Expression of dehydrins in wheat and barley under different temperatures. Plant Science, 2011, 180, 46-52.	3.6	33
22	Cereal resistance to Fusarium head blight and possibilities of its improvement through breeding. Czech Journal of Genetics and Plant Breeding, 2009, 45, 87-105.	0.8	31
23	Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biologia Plantarum, 2013, 57, 105-112.	1.9	31
24	Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies. Frontiers in Plant Science, 2016, 7, 1958.	3.6	28
25	Recent advances in breeding of cereals for resistance to barley yellow dwarf virus. Czech Journal of Genetics and Plant Breeding, 2008, 44, 1-10.	0.8	26
26	Relationship Between Dehydrin Accumulation and Winter Survival in Winter Wheat and Barley Grown in the Field. Frontiers in Plant Science, 2019, 10, 7.	3.6	21
27	The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68×Igri cross during cold acclimation. Journal of Plant Physiology, 2010, 167, 343-350.	3.5	19
28	The effect of Fusarium culmorum infection and deoxynivalenol (DON) application on proteome response in barley cultivars Chevron and Pedant. Journal of Proteomics, 2017, 169, 112-124.	2.4	17
29	Oats as a Safe Alternative to Triticeae Cereals for People Suffering from Celiac Disease? A Review. Plant Foods for Human Nutrition, 2020, 75, 131-141.	3.2	17
30	Plant Proteoforms Under Environmental Stress: Functional Proteins Arising From a Single Gene. Frontiers in Plant Science, 2021, 12, 793113.	3.6	17
31	Drought Stress Response in Common Wheat, Durum Wheat, and Barley: Transcriptomics, Proteomics, Metabolomics, Physiology, and Breeding for an Enhanced Drought Tolerance., 2016,, 277-314.		14
32	Breeding drought-resistant crops: G×E interactions, proteomics and pQTLS. Journal of Experimental Botany, 2019, 70, 2605-2608.	4.8	9
33	Characterization of the first Czech sorghum variety Ruzrok tested in Czech Republic. Czech Journal of Genetics and Plant Breeding, 2017, 53, 37-44.	0.8	8
34	COR/LEA Proteins as Indicators of Frost Tolerance in Triticeae: A Comparison of Controlled versus Field Conditions. Plants, 2021, 10, 789.	3.5	7
35	Proteome analysis in plant stress research: a review. Czech Journal of Genetics and Plant Breeding, 2007, 43, 1-6.	0.8	6
36	Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery. Biologia Plantarum, 2015, 59, 106-114.	1.9	6

KlÃira KosovÃi

#	Article	IF	CITATIONS
37	Mining Sorghum Biodiversity—Potential of Dual-Purpose Hybrids for Bio-Economy. Diversity, 2021, 13, 192.	1.7	6
38	Photosynthetic performance of two maize genotypes as affected by chilling stress. Plant, Soil and Environment, 2005, 51, 206-212.	2.2	5
39	Response of the spring wheat–cereal aphid system to drought: support for the plant vigour hypothesis. Journal of Pest Science, 2023, 96, 523-537.	3.7	5
40	Genetic characterization and evaluation of twenty Chinese winter wheat cultivars as potential sources of new diversity for breeding. Czech Journal of Genetics and Plant Breeding, 2019, 55, 8-14.	0.8	2
41	The effect of Fusarium culmorum inoculation and deoxynivalenol application on proteome response in wheat cultivars Sumai 3 and SW Kadrilj. Biologia Plantarum, 0, 65, 221-236.	1.9	2
42	Role of Dehydrins in Plant Stress Response. , 2019, , 175-196.		2
43	Specific Avenin Cross-Reactivity with G12 Antibody in a Wide Range of Current Oat Cultivars. Foods, 2022, 11, 567.	4.3	1