Sai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8962375/publications.pdf

Version: 2024-02-01

		471509	839539
18	1,566 citations	17	18
papers	citations	h-index	g-index
18	18	18	2596
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Transformation of Rusty Stainlessâ€Steel Meshes into Stable, Lowâ€Cost, and Binderâ€Free Cathodes for Highâ€Performance Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 7881-7885.	13.8	241
2	Surfactantâ€Free Aqueous Synthesis of Pure Singleâ€Crystalline SnSe Nanosheet Clusters as Anode for High Energy―and Powerâ€Density Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1602469.	21.0	231
3	High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes. Joule, 2018, 2, 736-746.	24.0	199
4	Reconstructed Orthorhombic V2O5 Polyhedra for Fast Ion Diffusion in K-Ion Batteries. CheM, 2019, 5, 168-179.	11.7	174
5	Pure Singleâ€Crystalline Na _{1.1} V ₃ O _{7.9} Nanobelts as Superior Cathode Materials for Rechargeable Sodiumâ€lon Batteries. Advanced Science, 2015, 2, 1400018.	11.2	110
6	Dendritic Niâ€Pâ€Coated Melamine Foam for a Lightweight, Lowâ€Cost, and Amphipathic Threeâ€Dimensional Current Collector for Binderâ€Free Electrodes. Advanced Materials, 2014, 26, 7264-7270.	21.0	103
7	Nâ€Doped C@Zn ₃ B ₂ O ₆ as a Low Cost and Environmentally Friendly Anode Material for Naâ€Ion Batteries: High Performance and New Reaction Mechanism. Advanced Materials, 2019, 31, e1805432.	21.0	72
8	Green and Facile Fabrication of MWNTs@Sb ₂ S ₃ @PPy Coaxial Nanocables for Highâ€Performance Naâ€lon Batteries. Particle and Particle Systems Characterization, 2016, 33, 493-499.	2.3	66
9	Integrating 3D Flower-Like Hierarchical Cu ₂ NiSnS ₄ with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9178-9184.	8.0	64
_		_	
10	Relaxor behavior of (Ba,Bi)(Ti,Al)O3 ferroelectric ceramic. Journal of Applied Physics, 2010, 107, .	2.5	56
10	Relaxor behavior of (Ba,Bi)(Ti,Al)O3 ferroelectric ceramic. Journal of Applied Physics, 2010, 107, . Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566.	2.5	48
	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries.		
11	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566. Transformation of Rusty Stainlessâ€Steel Meshes into Stable, Lowâ€Cost, and Binderâ€Free Cathodes for	25.5	48
11 12	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566. Transformation of Rusty Stainlessâ€Steel Meshes into Stable, Lowâ€Cost, and Binderâ€Free Cathodes for Highâ€Performance Potassiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 7989-7993. P3-type K _{0.33} Co _{0.53} Mn _{0.47} O ₂ ·0.39H ₂ O: a	25.5	48
11 12 13	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566. Transformation of Rusty Stainlessâ€Steel Meshes into Stable, Lowâ€Cost, and Binderâ€Free Cathodes for Highâ€Performance Potassiumâ€ion Batteries. Angewandte Chemie, 2017, 129, 7989-7993. P3-type K _{0.33} Co _{0.53} Mn _{0.47} O ₂ ·0.39H ₂ O: a novel bifunctional electrode for Na-ion batteries. Materials Horizons, 2017, 4, 1122-1127. Imine-Rich Poly(<i>o</i> ooooooo<	25.5 2.0 12.2	48 46 41
11 12 13	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566. Transformation of Rusty Stainlessâ€Steel Meshes into Stable, Lowâ€Cost, and Binderâ€Free Cathodes for Highâ€Performance Potassiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 7989-7993. P3-type K _{0.33} Co _{0.53} Mn _{0.47} O ₂ ·0.39H ₂ O: a novel bifunctional electrode for Na-ion batteries. Materials Horizons, 2017, 4, 1122-1127. Imine-Rich Poly(<i>>o</i> > -phenylenediamine) as High-Capacity Trifunctional Organic Electrode for Alkali-Ion Batteries. CCS Chemistry, 2019, 1, 365-372. Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing	25.5 2.0 12.2 7.8	48 46 41 40
11 12 13 14	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566. Transformation of Rusty Stainlessâ€Eteel Meshes into Stable, Lowâ€Cost, and Binderâ€Free Cathodes for Highâ€Performance Potassiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 7989-7993. P3-type K _{0.33} Co _{0.53} Mn _{0.47} O ₂ Â-0.39H ₂ O: a novel bifunctional electrode for Na-ion batteries. Materials Horizons, 2017, 4, 1122-1127. Imine-Rich Poly(<i>>o</i> > -phenylenediamine) as High-Capacity Trifunctional Organic Electrode for Alkali-Ion Batteries. CCS Chemistry, 2019, 1, 365-372. Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing range. Sensors and Actuators A: Physical, 2020, 315, 112304. P3-type K _{0.32} Fe _{0.35} Mn _{0.65} O ₂ Â-0.39H ₂ O: a	25.5 2.0 12.2 7.8	48 46 41 40 27