Seungjae Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8961429/publications.pdf

Version: 2024-02-01

		394421	3	345221	
54	1,387	19		36	
papers	citations	h-index		g-index	
54	54	54		897	
<i>3</i> 1	31	<i>3</i> (077	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Optimal disc brake design for reducing squeal instability using slip-dependent complex eigenvalue analysis. Mechanical Systems and Signal Processing, 2022, 177, 109240.	8.0	O
2	Design of spatially-varying orthotropic infill structures using multiscale topology optimization and explicit de-homogenization. Additive Manufacturing, 2021, 40, 101920.	3.0	13
3	Multi-objective topology optimization incorporating an adaptive weighed-sum method and a configuration-based clustering scheme. Computer Methods in Applied Mechanics and Engineering, 2021, 385, 114015.	6.6	10
4	Multi-material topology optimization considering joint stiffness using a two-step filtering approach. Finite Elements in Analysis and Design, 2021, 197, 103635.	3.2	8
5	Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency. Energy, 2021, 236, 121419.	8.8	20
6	Motor and Transmission Multiobjective Optimum Design for Tracked Hybrid Electric Vehicles Considering Equivalent Inertia of Track System. IEEE Transactions on Transportation Electrification, 2021, 7, 3110-3123.	7.8	12
7	Multi-objective optimisation of hydro-pneumatic suspension with gas–oil emulsion for heavy-duty vehicles. Vehicle System Dynamics, 2020, 58, 1146-1165.	3.7	25
8	Lightweight design of electric bus roof structure using multi-material topology optimisation. Structural and Multidisciplinary Optimization, 2020, 61, 1273-1285.	3.5	17
9	Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system. Applied Energy, 2020, 259, 114190.	10.1	60
10	Heat flux manipulation by using a single-variable formulated multi-scale topology optimization method. International Communications in Heat and Mass Transfer, 2020, 118, 104873.	5.6	13
11	Multi-Objective Optimization of Powertrain Components for Electric Vehicles Using a Two-Stage Analysis Model. International Journal of Automotive Technology, 2020, 21, 1495-1505.	1.4	14
12	Efficient uncertainty quantification for integrated performance of complex vehicle system. Mechanical Systems and Signal Processing, 2020, 139, 106601.	8.0	15
13	Multiobjective Optimization of the Benchmark TEAM Problem Using Gradient-Based Approach and Adaptive Weight Determination. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	0
14	Topology optimization of functionally graded anisotropic composite structures using homogenization design method. Computer Methods in Applied Mechanics and Engineering, 2020, 369, 113220.	6.6	48
15	Sensitivity Analysis for Multi-Objective Optimization of the Benchmark TEAM Problem. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	6
16	Material Interpolation in Multi-Material Topology Optimization for Magnetic Device Design. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	7
17	Topology optimization of anisotropic magnetic composites in actuators using homogenization design method. Structural and Multidisciplinary Optimization, 2019, 60, 1423-1436.	3.5	15
18	Multi-Objective Topology Optimization of a Magnetic Actuator Using an Adaptive Weight and Tunneling Method. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	9

#	Article	IF	Citations
19	Multiobjective optimization with an adaptive weight determination scheme using the concept of hyperplane. International Journal for Numerical Methods in Engineering, 2019, 118, 303-319.	2.8	16
20	Design Optimization of Wheeled Military Vehicle to Minimize Elevation and Azimuth Error of Gun Barrel. Transactions of the Korean Society of Automotive Engineers, 2019, 27, 245-251.	0.3	2
21	Optimization of Gear Ratio of In-Wheel Motor Vehicle Considering Probabilistic Driver Model. International Journal of Automotive Technology, 2018, 19, 1081-1089.	1.4	5
22	Efficient design optimization of complex system through an integrated interface using symbolic computation. Advances in Engineering Software, 2018, 126, 34-45.	3.8	17
23	Magnetising fixture design for optimal magnetisation orientation of ringâ€type magnet in surfaceâ€mounted permanent magnet motor. IET Electric Power Applications, 2018, 12, 1344-1349.	1.8	3
24	Construction of an Integrated Interface for Design Optimization of a Combat Vehicle System Using Maple Symbolic Computation. Transactions of the Korean Society of Mechanical Engineers, A, 2018, 42, 353-361.	0.2	0
25	Design Optimization of a Magnetic Actuator Incorporating the Concept of the Hybrid Analysis Method. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	5
26	Multi-Objective Optimization of Magnetic Actuator Design Using Adaptive Weight Determination Scheme. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	13
27	Shape design optimization of interior permanent magnet motor for vibration mitigation using level set method. International Journal of Automotive Technology, 2016, 17, 917-922.	1.4	4
28	Design optimization of a magnetic actuator incorporating the concept of the hybrid analysis method. , 2016, , .		2
29	Robust target cascading for improving firing accuracy of combat vehicle. Journal of Mechanical Science and Technology, 2016, 30, 5577-5586.	1.5	7
30	Multi-objective optimization of magnetic actuator design using adaptive weight determination scheme. , 2016, , .		2
31	Multi-Component Layout Optimization Method for the Design of a Permanent Magnet Actuator. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
32	Level-Set-Based Topology Optimization Using Remeshing Techniques for Magnetic Actuator Design. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	17
33	Vibration reduction Design of Permanent Magnet Motor Using Level Set Based Shape Optimization Method. World Electric Vehicle Journal, 2015, 7, 201-205.	3.0	2
34	Optimal Rotor Design of IPM Motor for Improving Torque Performance Considering Thermal Demagnetization of Magnet. IEEE Transactions on Magnetics, 2015, 51, 1-5.	2.1	22
35	Optimal Shape Design of Rotor Slot in Squirrel-Cage Induction Motor Considering Torque Characteristics. IEEE Transactions on Magnetics, 2013, 49, 2197-2200.	2.1	64
36	Air Gap Flux Density Waveform Design of Surface-Mounted Permanent Magnet Motor Considering Magnet Shape and Magnetization Direction. IEEE Transactions on Magnetics, 2013, 49, 2393-2396.	2.1	30

#	Article	IF	CITATIONS
37	Design Optimization of Permanent Magnet Actuator Using Multi-Phase Level-Set Model. IEEE Transactions on Magnetics, 2012, 48, 1641-1644.	2.1	27
38	Low Torque Ripple Rotor Design of the Interior Permanent Magnet Motor Using the Multi-Phase Level-Set and Phase-Field Concept. IEEE Transactions on Magnetics, 2012, 48, 907-910.	2.1	30
39	Topology Optimization of a Magnetic Actuator Based on a Level Set and Phase-Field Approach. IEEE Transactions on Magnetics, 2011, 47, 1318-1321.	2.1	25
40	Level-Set-Based Optimal Stator Design of Interior Permanent-Magnet Motor for Torque Ripple Reduction Using Phase-Field Model. IEEE Transactions on Magnetics, 2011, 47, 3020-3023.	2.1	21
41	Reliability-Based Topology Optimization of Frame Structures for Multiple Criteria Using SLSV Method. Journal of Computational Science and Technology, 2010, 4, 172-184.	0.4	2
42	Design of Magnetic Actuator With Nonlinear Ferromagnetic Materials Using Level-Set Based Topology Optimization. IEEE Transactions on Magnetics, 2010, 46, 618-621.	2.1	45
43	Optimal Stator Design of Interior Permanent Magnet Motor to Reduce Torque Ripple Using the Level Set Method. IEEE Transactions on Magnetics, 2010, 46, 2108-2111.	2.1	76
44	Topology optimization of magnetic actuator based on a level-set and a phase-field approach. , 2010, , .		0
45	Optimal design of stator and rotor of interior permanent magnet motor with reduced torque ripple for wide speed range operation. , 2010, , .		0
46	Optimal Topology Design of Magnetic Devices Using Level-Set Method. IEEE Transactions on Magnetics, 2009, 45, 1610-1613.	2.1	11
47	Magnetic Actuator Design for Maximizing Force Using Level Set Based Topology Optimization. IEEE Transactions on Magnetics, 2009, 45, 2336-2339.	2.1	27
48	Magnetic Actuator Design Using Level Set Based Topology Optimization. IEEE Transactions on Magnetics, 2008, 44, 4037-4040.	2.1	39
49	Optimal structural design considering flexibility. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 4457-4504.	6.6	71
50	Unified topology design of static and vibrating structures using multiobjective optimization. Computers and Structures, 2000, 75, 93-116.	4.4	55
51	Topological design considering flexibility under periodic loads. Structural and Multidisciplinary Optimization, 2000, 19, 4-16.	3.5	37
52	Optima topology design of structures under dynamic loads. Structural Optimization, 1999, 17, 208.	0.6	70
53	Topology optimization of compliant mechanisms using the homogenization method. International Journal for Numerical Methods in Engineering, 1998, 42, 535-559.	2.8	322
54	Optimal reinforcement design of structures under the buckling load using the homogenization design method. Structural Engineering and Mechanics, 1997, 5, 565-576.	1.0	17