List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8960716/publications.pdf Version: 2024-02-01

		8755	13771
223	18,586	75	129
papers	citations	h-index	g-index
233	233	233	19016
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-Throughput Synthesis of Single-Layer MoS ₂ Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano, 2014, 8, 6922-6933.	14.6	813
2	Functionalized Nano-MoS ₂ with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano, 2016, 10, 11000-11011.	14.6	812
3	Mn ²⁺ Dopantâ€Controlled Synthesis of NaYF ₄ :Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Advanced Materials, 2012, 24, 1226-1231.	21.0	758
4	Bismuth Sulfide Nanorods as a Precision Nanomedicine for <i>in Vivo</i> Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 2015, 9, 696-707.	14.6	503
5	Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 2013, 25, 3758-3779.	21.0	437
6	Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenchingâ€Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ â€Sensitized Nanoparticles. Advanced Materials, 2014, 26, 2831-2837.	21.0	405
7	Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for <i>In Vivo</i> Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano, 2015, 9, 12451-12463.	14.6	388
8	New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light: Science and Applications, 2013, 2, e50-e50.	16.6	355
9	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	8.2	336
10	WS ₂ nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale, 2014, 6, 10394-10403.	5.6	301
11	Functionalized MoS ₂ Nanovehicle with Nearâ€Infrared Laserâ€Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteriaâ€Infected Wound Therapy. Small, 2018, 14, e1802290.	10.0	259
12	Controllable Assembly of WO3Nanorods/Nanowires into Hierarchical Nanostructures. Journal of Physical Chemistry B, 2006, 110, 23829-23836.	2.6	257
13	Synthesis of BSAâ€Coated BiOI@Bi ₂ S ₃ Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor. Advanced Materials, 2017, 29, 1704136.	21.0	257
14	Emerging Strategies of Nanomaterialâ€Mediated Tumor Radiosensitization. Advanced Materials, 2019, 31, e1802244.	21.0	244
15	Recent Advances in Upconversion Nanoparticlesâ€Based Multifunctional Nanocomposites for Combined Cancer Therapy. Advanced Materials, 2015, 27, 7692-7712.	21.0	243
16	Smart MoS ₂ /Fe ₃ O ₄ Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics, 2015, 5, 931-945.	10.0	234
17	Grapheneâ€Based Smart Platforms for Combined Cancer Therapy. Advanced Materials, 2019, 31, e1800662.	21.0	233
18	An Allâ€Organic Semiconductor C ₃ N ₄ /PDINH Heterostructure with Advanced Antibacterial Photocatalytic Therapy Activity. Advanced Materials, 2019, 31, e1901965.	21.0	215

#	Article	IF	CITATIONS
19	Defectâ€Rich Adhesive Molybdenum Disulfide/rGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application. Advanced Materials, 2020, 32, e2005423.	21.0	207
20	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 11384-11388.	13.8	196
21	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€Sensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	14.9	194
22	Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. Journal of Solid State Chemistry, 2007, 180, 98-105.	2.9	186
23	Nd ³⁺ â€Sensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 2634-2638.	13.8	175
24	Redâ€Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Nearâ€Infrared Excitation. Small, 2013, 9, 1929-1938.	10.0	174
25	Rapid Degradation and High Renal Clearance of Cu ₃ BiS ₃ Nanodots for Efficient Cancer Diagnosis and Photothermal Therapy <i>in Vivo</i> . ACS Nano, 2016, 10, 4587-4598.	14.6	173
26	TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.	11.4	172
27	One-pot synthesis of PEGylated plasmonic MoO3–x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials, 2016, 76, 11-24.	11.4	171
28	Poly(Vinylpyrollidone)―and Selenocysteineâ€Modified Bi ₂ Se ₃ Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Advanced Materials, 2017, 29, 1701268.	21.0	171
29	Facile Fabrication of Rare-Earth-Doped Gd ₂ O ₃ Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties. Journal of Physical Chemistry C, 2011, 115, 23790-23796.	3.1	170
30	Efficient Near Infrared Light Triggered Nitric Oxide Release Nanocomposites for Sensitizing Mild Photothermal Therapy. Advanced Science, 2019, 6, 1801122.	11.2	169
31	Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano, 2017, 11, 7164-7176.	14.6	168
32	Enhanced Red Emission from GdF ₃ :Yb ³⁺ ,Er ³⁺ Upconversion Nanocrystals by Li ⁺ Doping and Their Application for Bioimaging. Chemistry - A European Journal, 2012, 18, 9239-9245.	3.3	166
33	Size-tunable synthesis of lanthanide-doped Gd ₂ O ₃ nanoparticles and their applications for optical and magnetic resonance imaging. Journal of Materials Chemistry, 2012, 22, 966-974.	6.7	165
34	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	10.0	152
35	Reactive Oxygen Speciesâ€Regulating Strategies Based on Nanomaterials for Disease Treatment. Advanced Science, 2021, 8, 2002797.	11.2	149
36	Biodegradable MoO _x nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale, 2018, 10, 1517-1531.	5.6	144

#	Article	IF	CITATIONS
37	Tumor Microenvironment-Responsive Cu ₂ (OH)PO ₄ Nanocrystals for Selective and Controllable Radiosentization via the X-ray-Triggered Fenton-like Reaction. Nano Letters, 2019, 19, 1749-1757.	9.1	142
38	An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 2021, 418, 129431.	12.7	140
39	Xâ€Rayâ€Controlled Generation of Peroxynitrite Based on Nanosized LiLuF ₄ :Ce ³⁺ Scintillators and their Applications for Radiosensitization. Advanced Materials, 2018, 30, e1804046.	21.0	138
40	Intelligent MoS ₂ Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. ACS Applied Materials & Interfaces, 2018, 10, 4271-4284.	8.0	137
41	Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.	11.9	135
42	Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials, 2019, 189, 11-22.	11.4	132
43	Peroxidase-like activity of MoS ₂ nanoflakes with different modifications and their application for H ₂ O ₂ and glucose detection. Journal of Materials Chemistry B, 2018, 6, 487-498.	5.8	130
44	Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-type Heterostructures of Au–Bi ₂ S ₃ Nanoparticles <i>via</i> X-ray-Induced Catalytic Reaction for Radiosensitization. ACS Nano, 2019, 13, 5947-5958.	14.6	126
45	Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. Journal of Materials Chemistry, 2012, 22, 6974.	6.7	124
46	Application of Quantum Dots in Biological Imaging. Journal of Nanomaterials, 2011, 2011, 1-13.	2.7	118
47	Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nature Communications, 2020, 11, 1174.	12.8	118
48	Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection. ACS Applied Materials & Interfaces, 2019, 11, 2579-2590.	8.0	115
49	Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale, 2012, 4, 3754.	5.6	113
50	A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. Journal of Materials Chemistry A, 2014, 2, 12296.	10.3	113
51	Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. Journal of Materials Chemistry B, 2017, 5, 1873-1895.	5.8	112
52	Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chemical Science, 2019, 10, 6932-6943.	7.4	111
53	A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines. Advanced Materials, 2019, 31, e1805391.	21.0	109
54	Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method. ACS Nano, 2009, 3, 273-278.	14.6	108

#	Article	IF	CITATIONS
55	An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Science Advances, 2020, 6, eaba9381.	10.3	105
56	A Heterojunction Structured WO _{2.9} -WSe ₂ Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose. ACS Nano, 2020, 14, 5400-5416.	14.6	104
57	Preparation of Lead-free Two-Dimensional-Layered (C ₈ H ₁₇ NH ₃) ₂ SnBr ₄ Perovskite Scintillators and Their Application in X-ray Imaging. ACS Applied Materials & Interfaces, 2020, 12, 19797-19804.	8.0	101
58	Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicology Letters, 2015, 237, 61-71.	0.8	100
59	Selfâ€Assembly of Copper–DNAzyme Nanohybrids for Dualâ€Catalytic Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 14324-14328.	13.8	100
60	TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Advances, 2012, 2, 7037.	3.6	98
61	Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chemical Communications, 2005, , 3597.	4.1	96
62	Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnology Advances, 2014, 32, 727-743.	11.7	94
63	Mesoporous NaYbF4@NaGdF4 core-shell up-conversion nanoparticles for targeted drug delivery and multimodal imaging. Biomaterials, 2014, 35, 7666-7678.	11.4	94
64	Stimuli-Responsive Small-on-Large Nanoradiosensitizer for Enhanced Tumor Penetration and Radiotherapy Sensitization. ACS Nano, 2020, 14, 10001-10017.	14.6	93
65	The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. Carbon, 2013, 57, 120-129.	10.3	92
66	Multifunctional Rb <i>_x</i> WO ₃ Nanorods for Simultaneous Combined Chemoâ€photothermal Therapy and Photoacoustic/CT Imaging. Small, 2014, 10, 4160-4170.	10.0	86
67	Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2014, 158-159, 296-300.	20.2	86
68	Multifunctional WS ₂ @Poly(ethylene imine) Nanoplatforms for Imaging Guided Geneâ€Photothermal Synergistic Therapy of Cancer. Advanced Healthcare Materials, 2016, 5, 2776-2787.	7.6	86
69	Design, Synthesis, and Surface Modification of Materials Based on Transitionâ€Metal Dichalcogenides for Biomedical Applications. Small Methods, 2017, 1, 1700220.	8.6	86
70	Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Advanced Science, 2019, 6, 1802289.	11.2	86
71	A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Nanoscale, 2013, 5, 11910.	5.6	85
72	Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. Journal of the American Chemical Society, 2021, 143, 16113-16127.	13.7	85

#	Article	IF	CITATIONS
73	Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle–Cell Membrane Interface. Nano Letters, 2019, 19, 8-18.	9.1	84
74	A Simple Hydrothermal Method for the Large-Scale Synthesis of Single-Crystal Potassium Tungsten Bronze Nanowires. Chemistry - A European Journal, 2006, 12, 7717-7723.	3.3	79
75	Chemical Mechanisms of the Toxicological Properties of Nanomaterials: Generation of Intracellular Reactive Oxygen Species. Chemistry - an Asian Journal, 2013, 8, 2342-2353.	3.3	79
76	Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. Small, 2019, 15, e1904382.	10.0	79
77	Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs. Journal of Materials Chemistry B, 2014, 2, 1379.	5.8	75
78	Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Materials, 2016, 8, e273-e273.	7.9	75
79	Bi ₂ WO ₆ Semiconductor Nanoplates for Tumor Radiosensitization through High- <i>Z</i> Effects and Radiocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 18942-18952.	8.0	75
80	Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells. ACS Applied Materials & Interfaces, 2017, 9, 14281-14291.	8.0	72
81	The polyvinylpyrrolidone functionalized rGO/Bi ₂ S ₃ nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer. Nanoscale, 2016, 8, 11531-11542.	5.6	71
82	Red, Green, and Blue Luminescence from ZnGa ₂ O ₄ Nanowire Arrays. Journal of Physical Chemistry Letters, 2010, 1, 354-357.	4.6	69
83	Design of TPGS-functionalized Cu ₃ BiS ₃ nanocrystals with strong absorption in the second near-infrared window for radiation therapy enhancement. Nanoscale, 2017, 9, 8229-8239.	5.6	69
84	Elemental Bismuth–Graphene Heterostructures for Photocatalysis from Ultraviolet to Infrared Light. ACS Catalysis, 2017, 7, 7043-7050.	11.2	65
85	BiO _{2–<i>x</i>} Nanosheets as Radiosensitizers with Catalase-Like Activity for Hypoxia Alleviation and Enhancement of the Radiotherapy of Tumors. Inorganic Chemistry, 2020, 59, 3482-3493.	4.0	64
86	Design and Fabrication of Rocketlike Tetrapodal CdS Nanorods by Seed-Epitaxial Metalâ^'Organic Chemical Vapor Deposition. Crystal Growth and Design, 2007, 7, 488-491.	3.0	63
87	Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon, 2011, 49, 2475-2482.	10.3	63
88	Ultrasmall BiOI Quantum Dots with Efficient Renal Clearance for Enhanced Radiotherapy of Cancer. Advanced Science, 2020, 7, 1902561.	11.2	63
89	Toxicity of manufactured nanomaterials. Particuology, 2022, 69, 31-48.	3.6	63
90	Evaluation of the toxicity of graphene oxide exposure to the eye. Nanotoxicology, 2016, 10, 1329-1340.	3.0	62

#	Article	IF	CITATIONS
91	Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF ₄ :Yb,Er upconversion nanoparticles in mice via different administration routes. Nanoscale, 2017, 9, 4497-4507.	5.6	61
92	Long-lasting near-infrared persistent luminescence from β-Ga2O3:Cr3+ nanowire assemblies. Journal of Luminescence, 2011, 131, 2784-2787.	3.1	60
93	Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract. Nanoscale, 2015, 7, 12581-12591.	5.6	60
94	Synthesis of ordered ZnS nanotubes by MOCVD-template method. Materials Chemistry and Physics, 2006, 100, 281-284.	4.0	58
95	Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. Biomaterials, 2020, 244, 119940.	11.4	58
96	Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Physical Chemistry Chemical Physics, 2014, 16, 1576-1582.	2.8	57
97	Synthesis of PVP-functionalized ultra-small MoS ₂ nanoparticles with intrinsic peroxidase-like activity for H ₂ O ₂ and glucose detection. RSC Advances, 2016, 6, 81174-81183.	3.6	57
98	Nd ³⁺ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application. Journal of Materials Chemistry B, 2016, 4, 2776-2784.	5.8	57
99	Time-Resolved Activation of pH Sensing and Imaging in Vivo by a Remotely Controllable DNA Nanomachine. Nano Letters, 2020, 20, 874-880.	9.1	56
100	Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. Materials Horizons, 2020, 7, 1834-1844.	12.2	56
101	MoS ₂ -Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Applied Materials & Interfaces, 2017, 9, 21362-21370.	8.0	54
102	Water-miscible organic J-aggregate nanoparticles as efficient two-photon fluorescent nano-probes for bio-imaging. Journal of Materials Chemistry, 2012, 22, 17737.	6.7	53
103	Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Advanced Healthcare Materials, 2018, 7, e1800421.	7.6	52
104	Clinically Approved Carbon Nanoparticles with Oral Administration for Intestinal Radioprotection via Protecting the Small Intestinal Crypt Stem Cells and Maintaining the Balance of Intestinal Flora. Small, 2020, 16, e1906915.	10.0	51
105	Enhanced green upconversion luminescence in tetrahedral LiYF ₄ :Yb/Er nanoparticles by manganese(<scp>ii</scp>)-doping: the key role of the host lattice. Nanoscale, 2018, 10, 2834-2840.	5.6	50
106	Manipulation of the Morphology of ZnSe Sub-Micron Structures Using CdSe Nanocrystals as the Seeds. Journal of Physical Chemistry C, 2007, 111, 2980-2986.	3.1	49
107	Phytotoxicity, Translocation, and Biotransformation of NaYF ₄ Upconversion Nanoparticles in a Soybean Plant. Small, 2015, 11, 4774-4784.	10.0	49
108	The age of bioinspired molybdenumâ€involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View, 2021, 2, 20200188.	5.3	49

#	Article	IF	CITATIONS
109	Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS ₂ . Nanoscale, 2019, 11, 4767-4780.	5.6	47
110	Toxicological Evaluation of Graphene-Family Nanomaterials. Journal of Nanoscience and Nanotechnology, 2020, 20, 1993-2006.	0.9	46
111	Synthesis of Single-Crystal ZnS Nanoawls via Two-Step Pressure-Controlled Vapor-Phase Deposition and Their Optical Properties. Crystal Growth and Design, 2007, 7, 1388-1392.	3.0	45
112	Design and Biomedical Applications of Poly(amidoamine)â€Dendrimerâ€Based Hybrid Nanoarchitectures. Small Methods, 2017, 1, 1700224.	8.6	45
113	Near infrared light triggered nitric oxide releasing platform based on upconversion nanoparticles for synergistic therapy of cancer stem-like cells. Science Bulletin, 2017, 62, 985-996.	9.0	45
114	A photochromic upconversion nanoarchitecture: towards activatable bioimaging and dual NIR light-programmed singlet oxygen generation. Chemical Science, 2019, 10, 10231-10239.	7.4	45
115	A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. Nanoscale, 2020, 12, 8415-8424.	5.6	43
116	Suppressing the Radiation-Induced Corrosion of Bismuth Nanoparticles for Enhanced Synergistic Cancer Radiophototherapy. ACS Nano, 2020, 14, 13016-13029.	14.6	42
117	Distinct M and P Helical Complexes of H2O and Metal Ions Nill, Cull, and ZnII with Enantiomerically Pure Chiral Bis(pyrrol-2-ylmethyleneamine)cyclohexane Ligands:  Crystal Structures and Circular Dichroism Properties. Inorganic Chemistry, 2007, 46, 3548-3556.	4.0	41
118	Few-Layer Bismuthene for Checkpoint Knockdown Enhanced Cancer Immunotherapy with Rapid Clearance and Sequentially Triggered One-for-All Strategy. ACS Nano, 2020, 14, 15700-15713.	14.6	41
119	Fabrication, structural characterization and photoluminescence of single-crystal ZnxCd1â^'xS zigzag nanowires. Nanotechnology, 2006, 17, 4644-4649.	2.6	40
120	Two-photon fluorescent microporous bithiophene polymer via Suzuki cross-coupling. Chemical Communications, 2012, 48, 9519.	4.1	40
121	Synthesis and Cathodoluminescence of Morphology-Tunable SiO ₂ Nanotubes and ZnS/SiO ₂ Coreâr'Shell Structures Using CdSe Nanocrystals as the Seeds. Journal of Physical Chemistry C, 2007, 111, 11604-11611.	3.1	38
122	A facile additive-free method for tunable fabrication of UO2 and U3O8 nanoparticles in aqueous solution. CrystEngComm, 2014, 16, 2645.	2.6	38
123	Controlled Hydrothermal Synthesis of Nickel Phosphite Nanocrystals with Hierarchical Superstructures. Crystal Growth and Design, 2007, 7, 825-830.	3.0	37
124	15 Years of <i>Small</i> : Research Trends in Nanosafety. Small, 2020, 16, e2000980.	10.0	37
125	Ultrathin, Transparent, and High Density Perovskite Scintillator Film for High Resolution Xâ€Ray Microscopic Imaging. Advanced Science, 2022, 9, e2200831.	11.2	37
126	Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy. Dalton Transactions, 2014, 43, 3861.	3.3	36

#	Article	IF	CITATIONS
127	A simple and efficient synthetic route for preparation of NaYF ₄ upconversion nanoparticles by thermo-decomposition of rare-earth oleates. CrystEngComm, 2014, 16, 5650-5661.	2.6	35
128	Toxicity and mechanism of mesoporous silica nanoparticles in eyes. Nanoscale, 2020, 12, 13637-13653.	5.6	35
129	Mesoporous Bamboo Charcoal Nanoparticles as a New Nearâ€Infrared Responsive Drug Carrier for Imagingâ€Guided Chemotherapy/Photothermal Synergistic Therapy of Tumor. Advanced Healthcare Materials, 2016, 5, 1627-1637.	7.6	34
130	X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. Biomaterials, 2021, 276, 121023.	11.4	34
131	Piezoelectric materials for synergistic piezo- and radio-catalytic tumor therapy. Nano Today, 2022, 44, 101510.	11.9	34
132	Biocompatible Tantalum Nanoparticles as Radiosensitizers for Enhancing Therapy Efficacy in Primary Tumor and Metastatic Sentinel Lymph Nodes. ACS Nano, 2022, 16, 9428-9441.	14.6	34
133	Harnessing Tumor Microenvironment for Nanoparticleâ€Mediated Radiotherapy. Advanced Therapeutics, 2018, 1, 1800050.	3.2	33
134	Synthesis of Surfaceâ€Modificationâ€Oriented Nanosized Molybdenum Disulfide with High Peroxidaseâ€Like Catalytic Activity for H ₂ 0 ₂ and Cholesterol Detection. Chemistry - A European Journal, 2018, 24, 15868-15878.	3.3	33
135	Bi ₂ S ₃ –Tween 20 Nanodots Loading PI3K Inhibitor, LY294002, for Mild Photothermal Therapy of LoVo Cells In Vitro and In Vivo. Advanced Healthcare Materials, 2018, 7, e1800830.	7.6	32
136	Ecoâ€Friendly and Scalable Synthesis of Fullerenols with High Free Radical Scavenging Ability for Skin Radioprotection. Small, 2021, 17, e2102035.	10.0	32
137	Research trend of nanoscience and nanotechnology – A bibliometric analysis of Nano Today. Nano Today, 2021, 39, 101233.	11.9	31
138	Three-Dimensional Germanium Oxide Nanowire Networks. Crystal Growth and Design, 2009, 9, 35-39.	3.0	29
139	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 11554-11558.	2.0	29
140	Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2588-2607.	5.8	29
141	Vapor-Phase Synthesis of Gallium Phosphide Nanowires. Crystal Growth and Design, 2009, 9, 525-527.	3.0	28
142	Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles. Nanotoxicology, 2018, 12, 819-835.	3.0	28
143	Self-Assembly of Graphene on Carbon Nanotube Surfaces. Scientific Reports, 2013, 3, 2353.	3.3	27
144	Improving 800 nm Triggered Upconversion Emission for Lanthanide-Doped CaF ₂ Nanoparticles through Sodium Ion Doping. Journal of Physical Chemistry C, 2017, 121, 18280-18287.	3.1	27

#	Article	IF	CITATIONS
145	Growth of single crystalline ZnxCd1â^'xS nanocombs by metallo-organic chemical vapor deposition. Chemical Physics Letters, 2006, 427, 371-374.	2.6	26
146	On-demand generation of singlet oxygen from a smart graphene complex for the photodynamic treatment of cancer cells. Biomaterials Science, 2014, 2, 1412-1418.	5.4	26
147	Fractionated regimen-suitable immunoradiotherapy sensitizer based on ultrasmall Fe4Se2W18 nanoclusters enable tumor-specific radiosensitization augment and antitumor immunity boost. Nano Today, 2021, 36, 101003.	11.9	26
148	Rational Design of Nanomaterials for Various Radiationâ€Induced Diseases Prevention and Treatment. Advanced Healthcare Materials, 2021, 10, e2001615.	7.6	26
149	A Bibliometric Analysis of <i>Advanced Healthcare Materials</i> : Research Trends of Biomaterials in Healthcare Application. Advanced Healthcare Materials, 2021, 10, e2002222.	7.6	25
150	Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – A bibliometric analysis. Advanced Drug Delivery Reviews, 2022, 188, 114420.	13.7	25
151	Molecular interaction between europium decatungstate and histone H1 and its application as a novel biological labeling agent. Journal of Biological Inorganic Chemistry, 2010, 15, 1079-1085.	2.6	24
152	Luminescent Zn2GeO4 nanorod arrays and nanowires. Physical Chemistry Chemical Physics, 2013, 15, 7488.	2.8	24
153	Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays. Nanoscale, 2009, 1, 347.	5.6	23
154	Enhanced radiosensitization of ternary Cu ₃ BiSe ₃ nanoparticles by photo-induced hyperthermia in the second near-infrared biological window. Nanoscale, 2019, 11, 7157-7165.	5.6	23
155	Oneâ€Pot Templateâ€Free Synthesis of NaYF ₄ Upconversion Hollow Nanospheres for Bioimaging and Drug Delivery. Chemistry - an Asian Journal, 2014, 9, 1655-1662.	3.3	22
156	Toxicity of silicon dioxide nanoparticles with varying sizes on the cornea and protein corona as a strategy for therapy. Science Bulletin, 2018, 63, 907-916.	9.0	21
157	Templateâ€Free Synthesis and Mechanistic Study of Porous Threeâ€Dimensional Hierarchical Uraniumâ€Containing and Uranium Oxide Microspheres. Chemistry - A European Journal, 2014, 20, 12655-12662.	3.3	20
158	Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Scientific Reports, 2019, 9, 5212.	3.3	20
159	Fullerenol@nano-montmorillonite nanocomposite as an efficient radioprotective agent for ameliorating radioactive duodenal injury. Chemical Engineering Journal, 2022, 427, 131725.	12.7	19
160	Transformable Galliumâ€Based Liquid Metal Nanoparticles for Tumor Radiotherapy Sensitization. Advanced Healthcare Materials, 2022, 11, e2102584.	7.6	19
161	Harnessing nanotechnology for cardiovascular disease applications - a comprehensive review based on bibliometric analysis. Nano Today, 2022, 44, 101453.	11.9	19
162	Luminescent GeO2–Zn2GeO4 hybrid one dimensional nanostructures. CrystEngComm, 2013, 15, 2904.	2.6	18

#	Article	IF	CITATIONS
163	Adlayer Structure of Shape-Persistent Macrocycle Molecules: Fabrication and Tuning Investigated with Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2014, 118, 6767-6772.	3.1	18
164	Cu ₂ (OH)PO ₄ /reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of 2,4-dichlorophenol under infrared light irradiation. RSC Advances, 2018, 8, 3611-3618.	3.6	18
165	Artificial photosynthesis for solar hydrogen generation over transition-metal substituted Keggin-type titanium tungstate. New Journal of Chemistry, 2014, 38, 1315-1320.	2.8	17
166	Nitric oxide-generating <scp>l</scp> -cysteine-grafted graphene film as a blood-contacting biomaterial. Biomaterials Science, 2016, 4, 938-942.	5.4	17
167	All-inorganic perovskite nanocrystal materials: new generation of scintillators for high quality X-ray imaging. Science Bulletin, 2019, 64, 1205-1206.	9.0	17
168	A bibliometric analysis: Research progress and prospects on transition metal dichalcogenides in the biomedical field. Chinese Chemical Letters, 2021, 32, 3762-3770.	9.0	17
169	Genomic in situ hybridization identifies genome donors of Camellia reticulata (Theaceae). Plant Science, 2011, 180, 554-559.	3.6	16
170	Approaching Carbon Nanotube Reinforcing Limit in B ₄ <scp>C</scp> Matrix Composites Produced by Chemical Vapor Infiltration. Advanced Engineering Materials, 2014, 16, 161-166.	3.5	16
171	Aggregation enhanced two-photon fluorescence of organic nanoparticles. Dyes and Pigments, 2015, 115, 211-217.	3.7	16
172	The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale, 2019, 11, 14528-14539.	5.6	16
173	Selfâ€Assembly of Copper–DNAzyme Nanohybrids for Dualâ€Catalytic Tumor Therapy. Angewandte Chemie, 2021, 133, 14445-14449.	2.0	16
174	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€Specific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie, 2022, 134, .	2.0	16
175	A Copper Peroxide Fenton Nanoagent-Hydrogel as an <i>In Situ</i> pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS Applied Bio Materials, 2022, 5, 1779-1793.	4.6	16
176	Controllable synthesis of Gd2O(CO3)2·H2O@silica–FITC nanoparticles with size-dependent optical and magnetic resonance imaging properties. New Journal of Chemistry, 2012, 36, 2599.	2.8	15
177	Enhanced Multifunctional Properties of Graphene Nanocomposites with Nacreâ€Like Structures. Advanced Engineering Materials, 2015, 17, 523-531.	3.5	15
178	Protein-directed synthesis of Bi ₂ S ₃ nanoparticles as an efficient contrast agent for visualizing the gastrointestinal tract. RSC Advances, 2017, 7, 17505-17513.	3.6	15
179	Silica nanoparticle exposure during the neonatal period impairs hippocampal precursor proliferation and social behavior later in life. International Journal of Nanomedicine, 2018, Volume 13, 3593-3608.	6.7	15
180	Semiconductor heterojunction-based radiocatalytic platforms for tumors treatment by enhancing radiation response and reducing radioresistance. Chemical Engineering Journal, 2020, 394, 124872.	12.7	15

#	Article	IF	CITATIONS
181	Fullerenol protects cornea from ultraviolet B exposure. Redox Biology, 2022, 54, 102360.	9.0	15
182	Growth of Uranyl Hydroxide Nanowires and Nanotubes by the Electrodeposition Method and Their Transformation to One-Dimensional U3O8Nanostructures. European Journal of Inorganic Chemistry, 2014, 2014, 1158-1164.	2.0	14
183	Evaluating the toxicity of silicon dioxide nanoparticles on neural stem cells using RNA-Seq. RSC Advances, 2017, 7, 47552-47564.	3.6	14
184	External use of Nano-graphdiyne hydrogel for skin radioprotection via both physically shielding of Low-energy X-ray and chemically scavenging of Broad-spectrum free radicals. Chemical Engineering Journal, 2022, 430, 132866.	12.7	13
185	Design and characterization of a high-power induction module at megahertz repetition rate burst mode. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579, 941-950.	1.6	11
186	Combined Apertureless Near-Field Optical Second-Harmonic Generation/Atomic Force Microscopy Imaging and Nanoscale Limit of Detection. Applied Spectroscopy, 2010, 64, 1-7.	2.2	11
187	Er ³⁺ -doped YbPO ₄ up-conversion porous nanospheres for UCL/CT bimodal imaging in vivo and chemotherapy. Journal of Materials Chemistry B, 2014, 2, 6508-6516.	5.8	11
188	PEC-GO@XN nanocomposite suppresses breast cancer metastasis via inhibition of mitochondrial oxidative phosphorylation and blockade of epithelial-to-mesenchymal transition. European Journal of Pharmacology, 2021, 895, 173866.	3.5	11
189	Morphologically-tunable anatase TiO2 with exposed (001) facet and related photocatalytic performance. Materials Letters, 2014, 128, 167-169.	2.6	10
190	Organic nanoparticle of 9,10-bis(phenylethynyl)anthracene: a novel electrochemiluminescence emitter for sensory detection of amines. New Journal of Chemistry, 2014, 38, 902.	2.8	10
191	Nd ³⁺ ‣ensitized Upconversion Metal–Organic Frameworks for Mitochondriaâ€Targeted Amplified Photodynamic Therapy. Angewandte Chemie, 2020, 132, 2656-2660.	2.0	10
192	Targeted delivery of Bi2Se3 Nanoflowers to orthotopic liver tumor via transarterial infusion for enhanced microwave ablation sensibilization. Nano Today, 2021, 41, 101314.	11.9	10
193	Recent advances in understanding the effects of nanomaterials on gut microbiota. Chemical Engineering Journal, 2022, 435, 134976.	12.7	9
194	Upconversion: Redâ€Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Nearâ€Infrared Excitation (Small 11/2013). Small, 2013, 9, 1928-1928.	10.0	8
195	A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Molecules, 2019, 24, 2387.	3.8	8
196	Hexagonal NaxWO3 nanocrystals with reversible valence states for microwave thermal and chemodynamic combined cancer therapy. Chemical Engineering Journal, 2022, 446, 136869.	12.7	8
197	Synthesis and Properties of Ovalâ€5haped Iron Oxide/Ethylene Glycol Mesostructured Nanosheets. Chemistry - A European Journal, 2013, 19, 5442-5449.	3.3	7
198	Temperature-feedback upconversion nanocomposite creates a new strategy for photothermal therapy. Science Bulletin, 2017, 62, 229-230.	9.0	6

#	Article	IF	CITATIONS
199	Preparation and Photocatalytic Properties of Ti1â^'xZrxO2 Solid Solution. Chinese Journal of Chemistry, 2007, 25, 484-489.	4.9	5
200	<i>In Vivo</i> Toxicity Evaluation of Graphene Oxide in <i>Drosophila Melanogaster</i> After Oral Administration. Journal of Nanoscience and Nanotechnology, 2016, 16, 7472-7478.	0.9	5
201	Lanthanide-doped materials as dual imaging and therapeutic agents. , 2018, , 381-410.		5
202	Transition Metal Dichalcogenides for Biomedical Applications. , 2019, , 241-292.		5
203	Visible-light-driven photocatalytic performance of nitrogen-doped Ti1â^'xZrxO2 solid solution. Materials Research Bulletin, 2013, 48, 587-594.	5.2	4
204	Functionalization of carbon nanotubes/graphene by polyoxometalates and their enhanced photo-electrical catalysis. Chinese Physics B, 2014, 23, 088801.	1.4	4
205	Catalytic Performance of Pt/Reduced Graphene Oxide Composites to Methanol Electrochemical Oxidation: Optimization of Mass-Specific Activity. Journal of Nanoscience and Nanotechnology, 2015, 15, 6628-6635.	0.9	4
206	Comparative Bio-Effects of SiO ₂ /Gd ₂ O ₃ Nanoparticles Depending on Their Core–Shell Structures. Journal of Nanoscience and Nanotechnology, 2013, 13, 1270-1273.	0.9	3
207	Facile Synthesis of TiO ₂ Microspheres with Reactive (001) Facets for Improved Photocatalytic Performance. Journal of Nanoscience and Nanotechnology, 2014, 14, 3969-3975.	0.9	3
208	Synthesis of ordered mesoporous U ₃ O ₈ by a nanocasting route. Radiochimica Acta, 2014, 102, 813-816.	1.2	3
209	Clinical Nanomaterials: A Safeâ€byâ€Đesign Strategy towards Safer Nanomaterials in Nanomedicines (Adv.) Tj ET(291.7 0.7	784314 rgB1
210	Research progress and applications of silica-based aerogels – a bibliometric analysis. RSC Advances, 2022, 12, 14137-14153.	3.6	3
211	Photocatalytic Activity of TiO ₂ Modified by Heteropolytungstate Acid. Advanced Materials Research, 2007, 26-28, 1083-1088.	0.3	2
212	Luminescent Nanoparticles: Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenchingâ€Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ â€Sensitized Nanoparticles (Adv. Mater. 18/2014). Advanced Materials, 2014, 26, 2766-2766.	21.0	2
213	Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications. Acta Chimica Sinica, 2019, 77, 406.	1.4	2
214	Toxicology of nanomaterials: From toxicokinetics to toxicity mechanisms. , 2023, , 718-732.		2
215	Controlled Hydrothermal Synthesis of Nickel Phosphite Nanocrystals with Hierarchical Superstructures. Crystal Growth and Design, 2008, 8, 750-750.	3.0	1
216	Controlled Synthesis and Electrochemical Properties of Co ₃ O ₄ Hierarchical Nanostructures from an Urchinlike Cobalt-Hydroxide-Carbonate Precursor. Journal of Nanoscience and Nanotechnology, 2012, 12, 8067-8076.	0.9	1

#	Article	IF	CITATIONS
217	Fabrication of capping-free Pt/porous RGO hybrids by a repeatable-using reduction material and their application in methanol electrooxidation. Chemical Physics Letters, 2015, 620, 73-77.	2.6	1
218	Photothermal Therapy: Multifunctional WS2 @Polyetherimide Nanoplatforms for Imaging Guided Gene-Photothermal Synergistic Therapy of Cancer (Adv. Healthcare Mater. 21/2016). Advanced Healthcare Materials, 2016, 5, 2834-2834.	7.6	1
219	Take precautions against potential threats that carbon nanotubes may bring to you. Science China Chemistry, 2020, 63, 141-142.	8.2	1
220	Dual-Functional Tris(2-phenylpyridine) Iridium Nanowires: Luminescent and Electrochemiluminescent Sensors. Sensor Letters, 2013, 11, 337-341.	0.4	1
221	Electrogenerated Chemiluminescence and Sensory Property of Rubrene Microparticles Immobilized on ITO Electrode. Advanced Materials Research, 2012, 535-537, 1262-1265.	0.3	0
222	Outstanding Reviewers for Journal of Materials Chemistry B in 2017. Journal of Materials Chemistry B, 2018, 6, 2649-2649.	5.8	0
223	Research Progress of Nanomaterials for Radioprotection. Acta Chimica Sinica, 2021, 79, 1438.	1.4	Ο