Nagarajan Selvamurugan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8958746/publications.pdf

Version: 2024-02-01

160 papers

12,207 citations

61 h-index 26613 107 g-index

164 all docs

164
docs citations

times ranked

164

13562 citing authors

#	Article	IF	CITATIONS
1	Bioactive Molecule-incorporated Polymeric Electrospun Fibers for Bone Tissue Engineering. Current Stem Cell Research and Therapy, 2023, 18, 470-486.	1.3	О
2	Biopolymers/Ceramic-Based Nanocomposite Scaffolds for Drug Delivery in Bone Tissue Engineering. Advances in Material Research and Technology, 2022, , 337-376.	0.6	0
3	Wound dressings based on chitosan/gelatin/MgO composite films. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1252-1261.	3.4	6
4	Parathyroid Hormone-regulation of Runx2 by MiR-290 for Matrix Metalloproteinase-13 Expression in Rat Osteoblastic Cells. Current Molecular Medicine, 2022, 22, 549-561.	1.3	3
5	Preparation and characterization of chitosan/carboxymethyl pullulan/bioglass composite films for wound healing. Journal of Biomaterials Applications, 2022, 36, 1151-1163.	2.4	11
6	Regulation of transforming growth factor- \hat{l}^2l -stimulation of Runx2 acetylation for matrix metalloproteinase 13 expression in osteoblastic cells. Biological Chemistry, 2022, 403, 305-315.	2.5	5
7	A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie, 2022, 193, 137-147.	2.6	24
8	Epigenetic modifications of histones during osteoblast differentiation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194780.	1.9	10
9	Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation, 2022, 124, 43-51.	1.9	6
10	Advancements in nucleic acidsâ€based techniques for bone regeneration. Biotechnology Journal, 2022, 17, 2100570.	3.5	1
11	Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sciences, 2022, 299, 120559.	4.3	4
12	Angiogenic and osteogenic effects of flavonoids in bone regeneration. Biotechnology and Bioengineering, 2022, 119, 2313-2330.	3.3	12
13	Identification and characterization of TGF-Î ² 1-responsive Runx2 acetylation sites for matrix Metalloproteinase-13 expression in osteoblastic cells. Biochimie, 2022, 201, 1-6.	2.6	2
14	Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 654-664.	3.4	15
15	Chitosan and Its Potential Use for the Delivery of Bioactive Molecules in Bone Tissue Engineering. Advances in Polymer Science, 2021, , 117-162.	0.8	О
16	Cellular senescence and aging in bone. , 2021, , 187-202.		6
17	Histone acetyl transferases and their epigenetic impact on bone remodeling. International Journal of Biological Macromolecules, 2021, 170, 326-335.	7.5	14
18	Synthesis and characterization of magnesium diboride nanosheets in alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111771.	5.0	18

#	Article	IF	CITATIONS
19	Chitosan-based 3D-printed scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2021, 183, 1925-1938.	7.5	73
20	Regulation of bone metastasis and metastasis suppressors by non-coding RNAs in breast cancer. Biochimie, 2021, 187, 14-24.	2.6	3
21	Threeâ€dimensionalâ€poly(lactic acid) scaffolds coated with gelatin/magnesiumâ€doped nanoâ€hydroxyapatite for bone tissue engineering. Biotechnology Journal, 2021, 16, e2100282.	3.5	15
22	A computational approach on studying the regulation of TGF- \hat{l}^21 -stimulated Runx2 expression by MicroRNAs in human breast cancer cells. Computers in Biology and Medicine, 2021, 137, 104823.	7.0	12
23	Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127609.	4.7	17
24	Regulation of Runx2 and Its Signaling Pathways by MicroRNAs in Breast Cancer Metastasis. Current Protein and Peptide Science, 2021, 22, 534-547.	1.4	5
25	TGF- \hat{l}^2 1-stimulation of NFATC2 and ATF3 proteins and their interaction for matrix metalloproteinase 13 expression in human breast cancer cells. International Journal of Biological Macromolecules, 2021, 192, 1325-1330.	7. 5	5
26	A computational study of non-coding RNAs on the regulation of activating transcription factor 3 in human breast cancer cells. Computational Biology and Chemistry, 2020, 89, 107386.	2.3	7
27	Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 164, 1960-1972.	7.5	40
28	Metal doped calcium silicate biomaterial for skin tissue regeneration in vitro. Journal of Biomaterials Applications, 2020, 36, 088532822096260.	2.4	11
29	An insight into cell-laden 3D-printed constructs for bone tissue engineering. Journal of Materials Chemistry B, 2020, 8, 9836-9862.	5.8	21
30	Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111110.	5.0	38
31	3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 162, 523-532.	7.5	62
32	Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 154, 62-71.	7.5	142
33	Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Materials Science and Engineering C, 2020, 111, 110862.	7.3	129
34	Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. International Journal of Biological Macromolecules, 2020, 150, 281-288.	7.5	90
35	miRâ€873â€3p targets HDAC4 to stimulate matrix metalloproteinaseâ€13 expression upon parathyroid hormone exposure in rat osteoblasts. Journal of Cellular Physiology, 2020, 235, 7996-8009.	4.1	21
36	Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sciences, 2020, 245, 117389.	4.3	83

#	Article	IF	Citations
37	An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H1OT1/2) towards osteoblasts. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127137.	2.2	15
38	The Functional Significance of Endocrine-immune Interactions in Health and Disease. Current Protein and Peptide Science, 2020, 21, 52-65.	1.4	9
39	Regulation of Breast Cancer Progression by Noncoding RNAs. Current Cancer Drug Targets, 2020, 20, 757-767.	1.6	3
40	Valproic acid, A Potential Inducer of Osteogenesis in Mouse Mesenchymal Stem Cells. Current Molecular Pharmacology, 2020, 14, 27-35.	1.5	9
41	Porous wound dressings based on chitosan/carboxymethyl guar gum/TiO2 nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	3
42	Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells. Scientific Reports, 2019, 9, 11900.	3.3	30
43	Osteogenic stimulatory effect of heraclenin purified from bael in mouse mesenchymal stem cells in vitro. Chemico-Biological Interactions, 2019, 310, 108750.	4.0	9
44	Composites Containing Marine Biomaterials for Bone Tissue Repair. Springer Series in Biomaterials Science and Engineering, 2019, , 357-382.	1.0	2
45	Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sciences, 2019, 232, 116676.	4.3	82
46	Chitosan in Surface Modification for Bone Tissue Engineering Applications. Biotechnology Journal, 2019, 14, e1900171.	3.5	39
47	Osteogenic potential of zingerone, a phenolic compound in mouse mesenchymal stem cells. BioFactors, 2019, 45, 575-582.	5.4	16
48	Stimulation of ATF3 interaction with Smad4 via TGF- \hat{l}^21 for matrix metalloproteinase 13 gene activation in human breast cancer cells. International Journal of Biological Macromolecules, 2019, 134, 954-961.	7.5	22
49	Chitosan and gelatin-based electrospun fibers for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 133, 354-364.	7.5	165
50	Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydrate Polymers, 2019, 216, 1-16.	10.2	67
51	TGF- \hat{l}^21 -stimulation of matrix metalloproteinase-13 expression by down-regulation of miR-203a-5p in rat osteoblasts. International Journal of Biological Macromolecules, 2019, 132, 541-549.	7.5	10
52	Parathyroid hormone-stimulation of Runx2 during osteoblast differentiation via the regulation of Inc-SUPT3H-1:16 (RUNX2-AS1:32) and miR-6797-5p. Biochimie, 2019, 158, 43-52.	2.6	34
53	Regulation of Histone Deacetylases by MicroRNAs in Bone. Current Protein and Peptide Science, 2019, 20, 356-367.	1.4	10
54	Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. International Journal of Biological Macromolecules, 2018, 111, 953-958.	7. 5	83

#	Article	IF	CITATIONS
55	Parathyroid hormoneâ€induced downâ€regulation of miRâ€532â€5p for matrix metalloproteinaseâ€13 expression in rat osteoblasts. Journal of Cellular Biochemistry, 2018, 119, 6181-6193.	¹ 2.6	22
56	Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. Journal of Cell Communication and Signaling, 2018, 12, 561-573.	3.4	47
57	Matrix metalloproteinase-13: A special focus on its regulation by signaling cascades and microRNAs in bone. International Journal of Biological Macromolecules, 2018, 109, 338-349.	7.5	9
58	Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydrate Polymers, 2018, 195, 356-367.	10.2	56
59	Characterization of Runx2 phosphorylation sites required for TGFâ€Î²1â€mediated stimulation of matrix metalloproteinaseâ€13 expression in osteoblastic cells. Journal of Cellular Physiology, 2018, 233, 1082-1094.	4.1	33
60	Pulsed electromagnetic fields inhibit human osteoclast formation and gene expression via osteoblasts. Bone, 2018, 106, 194-203.	2.9	35
61	Formulation and biological actions of nano-bioglass ceramic particles doped with Calcarea phosphorica for bone tissue engineering. Materials Science and Engineering C, 2018, 83, 202-209.	7. 3	16
62	Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 110, 74-87.	7.5	66
63	Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 110, 88-96.	7.5	125
64	Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Proliferation, 2018, 51, .	5.3	66
65	Hydroxyapatite mixed-electro discharge formation of bioceramic Lakargiite (CaZrO ₃) on Zr–Cu–Ni–Ti–Be for orthopedic application. Materials and Manufacturing Processes, 2018, 33, 1734-1744.	4.7	31
66	miR-590–3p inhibits proliferation and promotes apoptosis by targeting activating transcription factor 3 in human breast cancer cells. Biochimie, 2018, 154, 10-18.	2.6	39
67	Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International Journal of Biological Macromolecules, 2018, 119, 1228-1239.	7.5	203
68	Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. International Journal of Biological Macromolecules, 2018, 120, 310-317.	7.5	73
69	Fabrication of PCL/PVP Electrospun Fibers loaded with Trans-anethole for Bone Regeneration in vitro. Colloids and Surfaces B: Biointerfaces, 2018, 171, 698-706.	5.0	36
70	MicroRNAâ€590â€5p Stabilizes Runx2 by Targeting Smad7 During Osteoblast Differentiation. Journal of Cellular Physiology, 2017, 232, 371-380.	4.1	76
71	Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 2017, 104, 1975-1985.	7. 5	164
72	Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. International Journal of Biological Macromolecules, 2017, 98, 67-74.	7.5	65

#	Article	IF	Citations
73	Role of Runx2 in breast cancer-mediated bone metastasis. International Journal of Biological Macromolecules, 2017, 99, 608-614.	7.5	49
74	Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Materials Science and Engineering C, 2017, 71, 1156-1165.	7.3	42
75	Chitosan based nanofibers in bone tissue engineering. International Journal of Biological Macromolecules, 2017, 104, 1372-1382.	7. 5	206
76	Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids and Surfaces B: Biointerfaces, 2017, 158, 308-318.	5.0	80
77	Transforming growth factor- $\hat{1}^21$ regulation of ATF-3, c-Jun and JunB proteins for activation of matrix metalloproteinase-13 gene in human breast cancer cells. International Journal of Biological Macromolecules, 2017, 94, 370-377.	7.5	31
78	Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle$ Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation. Stem Cells International, 2017, 2017, 1-17.	2.5	48
79	Bioactive mesoporous wollastonite particles for bone tissue engineering. Journal of Tissue Engineering, 2016, 7, 204173141668031.	5.5	18
80	A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 2016, 151, 172-188.	10.2	493
81	Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. International Journal of Biological Macromolecules, 2016, 91, 45-50.	7.5	88
82	A Combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. International Journal of Biological Macromolecules, 2016, 93, 1457-1464.	7.5	31
83	Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1354-1365.	7.5	301
84	Regulation of Runx2 by Histone Deacetylases in Bone. Current Protein and Peptide Science, 2016, 17, 343-351.	1.4	15
85	Role of Mesoporous Wollastonite (Calcium Silicate) in Mesenchymal Stem Cell Proliferation and Osteoblast Differentiation: A Cellular and Molecular Study. Journal of Biomedical Nanotechnology, 2015, 11, 1124-1138.	1.1	65
86	Regulation of proliferation and apoptosis in human osteoblastic cells by microRNA-15b. International Journal of Biological Macromolecules, 2015, 79, 490-497.	7.5	40
87	Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of Nanobiotechnology, 2015, 13, 40.	9.1	198
88	Biomaterials mediated microRNA delivery for bone tissue engineering. International Journal of Biological Macromolecules, 2015, 74, 404-412.	7.5	56
89	Runx2, a target gene for activating transcription factor-3 in human breast cancer cells. Tumor Biology, 2015, 36, 1923-1931.	1.8	30
90	Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. International Journal of Biological Macromolecules, 2015, 80, 481-488.	7.5	114

#	Article	IF	Citations
91	Runx2: Structure, function, and phosphorylation in osteoblast differentiation. International Journal of Biological Macromolecules, 2015, 78, 202-208.	7. 5	284
92	Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Materials Science and Engineering C, 2015, 53, 142-149.	7.3	63
93	Metallic Nanomaterials for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2015, 11, 1675-1700.	1.1	67
94	A feedback expression of microRNA-590 and activating transcription factor-3 in human breast cancer cells. International Journal of Biological Macromolecules, 2015, 72, 145-150.	7.5	35
95	MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts. International Journal of Biological Macromolecules, 2014, 66, 194-202.	7.5	67
96	A Positive Role of MicroRNAâ€15b on Regulation of Osteoblast Differentiation. Journal of Cellular Physiology, 2014, 229, 1236-1244.	4.1	144
97	Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation. Materials Science and Engineering C, 2014, 43, 458-464.	7.3	41
98	Synthesis and Characterization of Diopside Particles and Their Suitability Along with Chitosan Matrix for Bone Tissue Engineering <l>ln</l> <l>Vitro</l> and <l>ln</l> <l>Vivo</l> Journal of Biomedical Nanotechnology, 2014, 10, 970-981.	1.1	57
99	Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. International Journal of Biological Macromolecules, 2013, 62, 481-486.	7.5	105
100	A novel injectable temperature-sensitive zinc doped chitosan/ \hat{l}^2 -glycerophosphate hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 2013, 54, 24-29.	7.5	137
101	Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2013, 109, 294-300.	5.0	215
102	Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment. International Journal of Biological Macromolecules, 2013, 56, 181-185.	7.5	55
103	Regulation of Breast Cancer and Bone Metastasis by MicroRNAs. Disease Markers, 2013, 35, 369-387.	1.3	101
104	Expression of Matrix Metalloproteinases in Human Breast Cancer Tissues. Disease Markers, 2013, 34, 395-405.	1.3	45
105	Expression of matrix metalloproteinases in human breast cancer tissues. Disease Markers, 2013, 34, 395-405.	1.3	35
106	MicroRNAs: Synthesis, Gene Regulation and Osteoblast Differentiation. Current Issues in Molecular Biology, 2013, 15, 7-18.	2.4	51
107	Synthesis, Characterization, and Antimicrobial Activity of Nano-Hydroxyapatite-Zinc for Bone Tissue Engineering Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 167-172.	0.9	46
108	Synthesis, Characterization and Biological Action of Nano-Bioglass Ceramic Particles for Bone Formation. Journal of Biomaterials and Tissue Engineering, 2012, 2, 197-205.	0.1	22

#	Article	IF	Citations
109	Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering. International Journal of Biological Macromolecules, 2012, 50, 294-299.	7.5	160
110	Chitosan and its derivatives for gene delivery. International Journal of Biological Macromolecules, 2011, 48, 234-238.	7. 5	223
111	Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. International Journal of Biological Macromolecules, 2011, 49, 188-193.	7.5	263
112	Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. International Journal of Biological Macromolecules, 2011, 49, 1167-1172.	7. 5	100
113	Effects of <i>Cissus quadrangularis</i> on the proliferation, differentiation and matrix mineralization of human osteoblast like SaOSâ€₂ cells. Journal of Cellular Biochemistry, 2011, 112, 1035-1045.	2.6	56
114	Enhanced Osteoblast Adhesion on Polymeric Nano-Scaffolds for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2011, 7, 238-244.	1.1	80
115	Synthesis and Characterization of NanoscaleHydroxyapatite-Copper for Antimicrobial Activity Towards Bone Tissue Engineering Applications. Journal of Biomedical Nanotechnology, 2010, 6, 333-339.	1.1	65
116	Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010, 55, 675-709.	32.8	454
117	Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical Engineering Journal, 2010, 158, 353-361.	12.7	354
118	Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydrate Polymers, 2010, 79, 1-8.	10.2	273
119	Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2010, 80, 687-694.	10.2	317
120	HDAC4 Represses Matrix Metalloproteinase-13 Transcription in Osteoblastic Cells, and Parathyroid Hormone Controls This Repression. Journal of Biological Chemistry, 2010, 285, 9616-9626.	3.4	79
121	Role of Nanofibrous Poly(Caprolactone) Scaffolds in Human Mesenchymal Stem Cell Attachment and Spreading for∢i>In Vitro∢/i>Bone Tissue Engineering—Response to Osteogenic Regulators. Tissue Engineering - Part A, 2010, 16, 393-404.	3.1	125
122	Polymeric composites containing carbon nanotubes for bone tissue engineering. International Journal of Biological Macromolecules, 2010, 46, 281-283.	7.5	153
123	Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules, 2010, 47, 1-4.	7. 5	459
124	Runx2 Recruits p300 to Mediate Parathyroid Hormone's Effects on Histone Acetylation and Transcriptional Activation of the Matrix Metalloproteinase-13 Gene. Molecular Endocrinology, 2009, 23, 1255-1263.	3.7	41
125	Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinaseâ€13 promoter activation. FEBS Letters, 2009, 583, 1141-1146.	2.8	56
126	Mitogen activated protein kinaseâ€dependent inhibition of osteocalcin gene expression by transforming growth factorâ€Î²1. Journal of Cellular Biochemistry, 2009, 106, 161-169.	2.6	20

#	Article	IF	CITATIONS
127	Transforming growth factorâ $\widehat{\mathfrak{el}}^21$ regulation of ATFâ $\widehat{\mathfrak{es}}$ and identification of ATFâ $\widehat{\mathfrak{es}}$ target genes in breast cancer cells. Journal of Cellular Biochemistry, 2009, 108, 408-414.	2.6	24
128	Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers, 2009, 77, 863-869.	10.2	255
129	Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydrate Polymers, 2009, 78, 672-677.	10.2	342
130	Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules, 2009, 44, 1-5.	7.5	122
131	Preparation, characterization, bioactive and metal uptake studies of alginate/phosphorylated chitin blend films. International Journal of Biological Macromolecules, 2009, 44, 107-111.	7.5	67
132	Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules, 2009, 45, 12-15.	7.5	151
133	The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology, 2009, 20, 195101.	2.6	91
134	Preparative methods of phosphorylated chitin and chitosanâ€"An overview. International Journal of Biological Macromolecules, 2008, 43, 221-225.	7.5	158
135	Interleukin-18 Is Regulated by Parathyroid Hormone and Is Required for Its Bone Anabolic Actions. Journal of Biological Chemistry, 2008, 283, 6790-6798.	3.4	49
136	Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. Journal of Orthopaedic Research, 2007, 25, 1213-1220.	2.3	92
137	Parathyroid Hormone Regulates Histone Deacetylases in Osteoblasts. Annals of the New York Academy of Sciences, 2007, 1116, 349-353.	3.8	21
138	Parathyroid Hormone Stimulates Trafficking and Partial Degradation of Histone Deacetylase 4. FASEB Journal, 2007, 21, A617.	0.5	0
139	Overexpression of Runx2 directed by the matrix metalloproteinase-13 promoter containing the AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo. Journal of Cellular Biochemistry, 2006, 99, 545-557.	2.6	61
140	Parathyroid hormone stimulation and PKA signaling of latent transforming growth factor-Î ² binding protein-1 (LTBP-1) mRNA expression in osteoblastic cells. Journal of Cellular Biochemistry, 2005, 95, 1002-1011.	2.6	14
141	Transcription in the Osteoblast: Regulatory Mechanisms Utilized by Parathyroid Hormone and Transforming Growth Factorâ€Beta. Progress in Molecular Biology and Translational Science, 2005, 80, 287-321.	1.9	14
142	Transforming Growth Factor- \hat{l}^21 Regulation of Collagenase-3 Expression in Osteoblastic Cells by Cross-talk between the Smad and MAPK Signaling Pathways and Their Components, Smad2 and Runx2. Journal of Biological Chemistry, 2004, 279, 19327-19334.	3.4	117
143	Smad3 Interacts with JunB and Cbfa1/Runx2 for Transforming Growth Factor-Î ² 1-stimulated Collagenase-3 Expression in Human Breast Cancer Cells. Journal of Biological Chemistry, 2004, 279, 27764-27773.	3.4	122
144	Nmp4/CIZ regulation of matrix metalloproteinase 13 (MMP-13) response to parathyroid hormone in osteoblasts. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E289-E296.	3.5	43

#	Article	IF	CITATIONS
145	Physical Interaction of the Activator Protein-1 Factors c-Fos and c-Jun with Cbfa1 for Collagenase-3 Promoter Activation. Journal of Biological Chemistry, 2002, 277, 816-822.	3.4	155
146	Transcriptional activation of collagenase-3 by transforming growth factor- \hat{l}^21 is via MAPK and Smad pathways in human breast cancer cells. FEBS Letters, 2002, 532, 31-35.	2.8	28
147	Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene, 2002, 282, 1-17.	2.2	306
148	Bone Proteinases. , 2002, , 251-264.		2
149	Regulation of collagenase-3 gene expression in osteoblastic and non-osteoblastic cell lines. Journal of Cellular Biochemistry, 2000, 79, 182-190.	2.6	23
150	Parathyroid Hormone Regulation of the Rat Collagenase-3 Promoter by Protein Kinase A-dependent Transactivation of Core Binding Factor $\hat{l}\pm 1$. Journal of Biological Chemistry, 2000, 275, 5037-5042.	3.4	181
151	Developmental Regulation of Collagenase-3 mRNA in Normal, Differentiating Osteoblasts through the Activator Protein-1 and the runt Domain Binding Sites. Journal of Biological Chemistry, 2000, 275, 23310-23318.	3.4	59
152	Constitutive Expression and Regulation of Collagenase-3 in Human Breast Cancer Cells. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 218-223.	1.6	37
153	Parathyroid Hormone Regulates the Rat Collagenase-3 Promoter in Osteoblastic Cells through the Cooperative Interaction of the Activator Protein-1 Site and the runt Domain Binding Sequence. Journal of Biological Chemistry, 1998, 273, 10647-10657.	3.4	162
154	Intracellular Localization and Unique Conserved Sequences of Three Small Nucleolar RNAs. Nucleic Acids Research, 1997, 25, 1591-1596.	14.5	24
155	Intron-encoded small nucleolar RNAs: new RNA sequence variants and genomic loci. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 230-234.	2.4	3
156	The gene for human E2 small nucleolar RNA resides in an intron of a laminin-binding protein gene. Genomics, 1995, 30, 400-1.	2.9	5
157	Expression of proto-oncogenes and muscle specific genes during cardiac hypertrophy and development in rats and humans. Journal of Biosciences, 1994, 19, 155-169.	1.1	О
158	Genes for E1, E2, and E3 small nucleolar RNAs Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9001-9005.	7.1	27
159	Purification and characterization of a high-molecular-weight protein induced in rat serum during the development of cardiac hypertrophy. Archives of Biochemistry and Biophysics, 1990, 281, 287-297.	3.0	12
160	Activation of myosin heavy chain genes during cardiac hypertrophy. Journal of Biosciences, 1988, 13, 249-256.	1.1	1