
Toshiyuki Osakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8958734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochimica Et Biophysica Acta - General Subjects, 2002, 1572, 123-132.	2.4	221
2	Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 159-167.	2.4	137
3	A.c. Polarographic Study of Ion Transfer at the Water/Nitrobenzene Interface. Bulletin of the Chemical Society of Japan, 1984, 57, 370-376.	3.2	112
4	On the Mechanism of Transfer of Sodium Ion across the Nitrobenzene/Water Interface Facilitated by Dibenzo-18-crown-6. Bulletin of the Chemical Society of Japan, 1986, 59, 781-788.	3.2	103
5	Hydration of Ions in Organic Solvent and Its Significance in the Gibbs Energy of Ion Transfer between Two Immiscible Liquids. Journal of Physical Chemistry B, 1997, 101, 8341-8348.	2.6	99
6	Non-Bornian Theory of the Gibbs Energy of Ion Transfer between Two Immiscible Liquids. Journal of Physical Chemistry B, 1998, 102, 5691-5698.	2.6	97
7	Mechanistic Study of the Oxidation of Caffeic Acid by Digital Simulation of Cyclic Voltammograms. Analytical Biochemistry, 2002, 303, 66-72.	2.4	90
8	A Potential-step Chronoamperometric Study of Ion Transfer at the Water/Nitrobenzene Interface. Bulletin of the Chemical Society of Japan, 1983, 56, 991-996.	3.2	88
9	A voltammetric study of Keggin-type heteropolymolybdate anions. Journal of Electroanalytical Chemistry, 1994, 364, 149-154.	3.8	83
10	Product analysis of caffeic acid oxidation by on-line electrochemistry/electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2004, 15, 1228-1236.	2.8	76
11	Electrochemical Extraction of Proteins by Reverse Micelle Formation. Langmuir, 2006, 22, 5937-5944.	3.5	67
12	Clarification of the Mechanism of Interfacial Electron-Transfer Reaction between Ferrocene and Hexacyanoferrate(III) by Digital Simulation of Cyclic Voltammograms. Journal of Physical Chemistry B, 2003, 107, 9717-9725.	2.6	66
13	Kinetics of the Transfer of Picrate Ion at the Water/Nitrobenzene Interface. Bulletin of the Chemical Society of Japan, 1985, 58, 2626-2633.	3.2	64
14	Charge dependence of one-electron redox potentials of Keggin-type heteropolyoxometalate anions. Journal of Electroanalytical Chemistry, 1995, 389, 167-173.	3.8	64
15	Pulse Amperometric Detection of Lithium in Artificial Serum Using a Flow Injection System with a Liquid/Liquid-Type Ion-Selective Electrode. Analytical Chemistry, 1998, 70, 4286-4290.	6.5	64
16	Voltammetric Characterization of Oxide Films Formed on Copper in Air. Journal of the Electrochemical Society, 2001, 148, B467.	2.9	64
17	Electron-conductor separating oil–water (ECSOW) system: a new strategy for characterizing electron-transfer processes at the oil/water interface. Electrochemistry Communications, 2002, 4, 472-477.	4.7	56
18	Structure–activity relations of azafluorenone and azaanthraquinone as antimicrobial compounds. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1079-1082.	2.2	53

#	Article	IF	CITATIONS
19	Monolayer Formation of Dilauroylphosphatidylcholine at the Polarized Nitrobenzene–Water Interface. Bulletin of the Chemical Society of Japan, 1987, 60, 4223-4228.	3.2	49
20	Direct Label-free Electrochemical Detection of Proteins Using the Polarized Oil/Water Interface. Langmuir, 2010, 26, 11530-11537.	3.5	49
21	Complete Electrolysis Using a Microflow Cell with an Oil/Water Interface. Analytical Chemistry, 2002, 74, 1177-1181.	6.5	46
22	Voltammetry with an Ion-Selective Microelectrode Based on Polarizable Oil/Water Interface. Analytical Sciences, 1991, 7, 371-376.	1.6	45
23	Ion-transfer voltammetry with the interfaces between polymer-electrolyte gel and electrolyte solutions Bunseki Kagaku, 1984, 33, E371-E377.	0.2	44
24	Voltammetric Characterization of α- and β-Dodecamolybdophosphates in Aqueous Organic Solutions. Bulletin of the Chemical Society of Japan, 1989, 62, 1335-1337.	3.2	44
25	Which Is Easier to Reduce, Cu[sub 2]O or CuO?. Journal of the Electrochemical Society, 2007, 154, C1.	2.9	43
26	Ion-Transfer Voltammetry and Potentiometry of Acetylcholine with the Interface between Polymer-Nitrobenzene Gel and Water. Analytical Sciences, 1985, 1, 219-225.	1.6	42
27	Potential-Dependent Adsorption of Amphoteric Rhodamine Dyes at the Oil/Water Interface as Studied by Potential-Modulated Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 9480-9487.	3.1	42
28	Hydrophobicity of oligopeptides: a voltammetric study of the transfer of dipeptides facilitated by dibenzo-18-crown-6 at the nitrobenzene/water interface. Physical Chemistry Chemical Physics, 1999, 1, 4819-4825.	2.8	41
29	Determination of the standard free energies of transfer of alkylammonium ions from nitrobenzene to water using polarographic methods with immiscible electrolyte solution interface Bunseki Kagaku, 1983, 32, E81-E84.	0.2	40
30	A Novel Amperometric Ammonia Sensor. Analytical Sciences, 1987, 3, 521-526.	1.6	38
31	A microcomputer-controlled system for ion-transfer voltammetry Bunseki Kagaku, 1989, 38, 479-485.	0.2	37
32	Electrochemical consideration on the optimum pH of bilirubin oxidase. Analytical Biochemistry, 2007, 370, 98-106.	2.4	36
33	Preparation and Properties of Heteropoly Molybdovanadate(V) Complexes. Bulletin of the Chemical Society of Japan, 1991, 64, 21-28.	3.2	35
34	Voltammetric study of the transfer of Dawson-type heteropolyanions across the nitrobenzene—water interface. Journal of Electroanalytical Chemistry, 1992, 332, 169-182.	3.8	34
35	A Voltammetric Study on the One-Electron Redox Processes of the Dawson-Type Heteropolymolybdate Complexes Bulletin of the Chemical Society of Japan, 1993, 66, 109-113.	3.2	31
36	A Novel Amperometric Urea Sensor. Analytical Sciences, 1988, 4, 529-530.	1.6	30

#	Article	IF	CITATIONS
37	Electrochemical Formation of 11-Molybdophosphate Anion at the Nitrobenzene/Water Interface and Its Applicability to the Determination of Orthophosphate Ion. Bulletin of the Chemical Society of Japan, 1991, 64, 1313-1317.	3.2	30
38	How Can Multielectron Transfer Be Realized? A Case Study with Keggin-Type Polyoxometalates in Acetonitrile. Inorganic Chemistry, 2015, 54, 2793-2801.	4.0	30
39	Supporting Electrolytes for Voltammetric Study of Ion Transfer at Nitrobenzene/Water Interface. Analytical Sciences, 1987, 3, 499-503.	1.6	29
40	Mechanistic aspects associated with the oxidation of l-ascorbic acid at the 1,2-dichloroethaneâ^£water interface. Journal of Electroanalytical Chemistry, 2001, 510, 43-49.	3.8	29
41	Quantitative analysis of the structure–hydrophobicity relationship for di- and tripeptides based on voltammetric measurements with an oil/water interface. Physical Chemistry Chemical Physics, 2006, 8, 985.	2.8	29
42	A Hydrophobicity Scale of Heteropoly- and Isopolyanions Based on Voltammetric Studies of Their Transfer at the Nitrobenzene/Water Interface. Bulletin of the Chemical Society of Japan, 1993, 66, 1111-1115.	3.2	26
43	A kinetic study of the formation of 12-molybdosilicate and 12-molybdogermanate in aqueous solutions by ion transfer voltammetry with the nitrobenzene-water interface. Electrochimica Acta, 1995, 40, 2935-2942.	5.2	24
44	Direct spectroelectrochemical observation of interfacial species at the polarized water/1,2-dichloroethane interface by ac potential modulation technique. Journal of Electroanalytical Chemistry, 2006, 588, 99-105.	3.8	24
45	Mechanistic study of the reduction of copper oxides in alkaline solutions by electrochemical impedance spectroscopy. Electrochimica Acta, 2008, 53, 3493-3499.	5.2	24
46	On the one-electron redox process of 18-molybdodisulfate(VI) with the Dawson structure. Journal of Electroanalytical Chemistry, 1992, 337, 371-374.	3.8	23
47	Correlation of redox potentials and inhibitory effects on Epstein–Barr virus activation of naphthoquinones. Cancer Letters, 2003, 201, 25-30.	7.2	23
48	Determination of the Entropy of Ion Transfer between Two Immiscible Liquids Using the Water Oil Water Thermocouple. Journal of Physical Chemistry B, 2003, 107, 9829-9836.	2.6	22
49	Performance Evaluation of the Four-Electrode Type Measurement System for Ion-Transfer Voltammetry. Electrochemistry, 2002, 70, 329-333.	1.4	22
50	Linear dependence of the standard ion transfer-potentials of heteropoly and isopoly anions at the 1,2-dichloroethane/water interface on their surface charge densities. Journal of Electroanalytical Chemistry, 1993, 360, 299-307.	3.8	21
51	Mechanistic study of the oxidation of l-ascorbic acid by chloranil at the nitrobenzeneâ^£water interface. Journal of Electroanalytical Chemistry, 2000, 490, 85-92.	3.8	20
52	Correlation with Redox Potentials and Inhibitory Effects on Epstein-Barr Virus Activation of Azaanthraquinones Chemical and Pharmaceutical Bulletin, 2001, 49, 1214-1216.	1.3	19
53	Correlation of redox potentials and inhibitory effects on Epstein-Barr virus activation of 2-azaanthraquinones. Cancer Letters, 2004, 212, 1-6.	7.2	18
54	Photoinduced Chargeâ€Transfer State of 4â€Carbazolylâ€3â€(trifluoromethyl)benzoic Acid: Photophysical Property and Application to Reduction of Carbonâ^'Halogen Bonds as a Sensitizer. Chemistry - an Asian Journal, 2016, 11, 2006-2010.	3.3	18

#	Article	IF	CITATIONS
55	Voltammetric Lithium Ion-Selective Electrodes Based on Ion Transfer at the Oil/Water Interface Facilitated by Neutral Ionophores. Analytical Sciences, 1994, 11, 733-738.	1.6	17
56	Inhibitory effects on Epstein-Barr virus activation of anthraquinones: correlation with redox potentials. Cancer Letters, 1997, 115, 179-183.	7.2	17
57	Electrochemical control of glucose oxidase-catalyzed redox reaction using an oil/water interface. Physical Chemistry Chemical Physics, 2004, 6, 3563.	2.8	17
58	Evaluation of the membrane permeability of drugs by ion-transfer voltammetry with the oil water interface. Journal of Electroanalytical Chemistry, 2016, 779, 55-60.	3.8	17
59	Electrochemical reduction of hexamolybdate(2 –) ion in acidic aqueous-organic media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 285, 209-221.	0.1	16
60	Voltammetric study of the transfer of keggin-type heteropolyanions across the nitrobenzene/water interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 302, 145-156.	0.1	16
61	Correlation between oxidation potentials and inhibitory effects on Epstein–Barr virus activation of flavonoids. Cancer Letters, 2008, 263, 61-66.	7.2	16
62	A Mechanism for the Atmospheric Corrosion of Copper Determined by Voltammetry with a Strongly Alkaline Electrolyte. Journal of the Electrochemical Society, 2010, 157, C289.	2.9	16
63	Prediction of the Standard Gibbs Energy of Transfer of Organic Ions Across the Interface between Two Immiscible Liquids. Journal of Physical Chemistry B, 2015, 119, 13167-13176.	2.6	16
64	Quantum chemical approach to the gibbs energy of ion transfer between two immiscible liquids. Journal of Electroanalytical Chemistry, 1996, 412, 1-9.	3.8	15
65	Correlation between reduction potentials and inhibitions of Epstein–Barr virus activation by anthraquinone derivatives. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4106-4109.	2.2	15
66	Electrochemical Aspects of the Reverse Micelle Extraction of Proteins. Analytical Sciences, 2008, 24, 901-906.	1.6	15
67	A revisit to the non-Bornian theory of the Gibbs energy of ion transfer between two immiscible liquids. Journal of Electroanalytical Chemistry, 2013, 704, 38-43.	3.8	15
68	A volatile amine sensor based on the amperometric ion selective electrode Bunseki Kagaku, 1989, 38, 589-595.	0.2	14
69	Role of interfacial potential in coagulation of cuprammonium cellulose solution. Journal of Applied Polymer Science, 1996, 59, 15-21.	2.6	14
70	A True Electron-Transfer Reaction between 5,10,15,20-Tetraphenylporphyrinato Cadmium(II) and the Hexacyanoferrate Couple at the Nitrobenzene/Water Interface. Analytical Sciences, 2004, 20, 1567-1573.	1.6	14
71	Potassium and sodium ion sensor based on amperometric ion selective electrode Bunseki Kagaku, 1990, 39, 655-660.	0.2	13
72	Highly Selective Determination of Copper Corrosion Products by Voltammetric Reduction in a Strongly Alkaline Electrolyte. Analytical Sciences, 2012, 28, 323-331.	1.6	13

#	Article	IF	CITATIONS
73	Electron Transfer Mechanism of Cytochrome <i>c</i> at the Oil/Water Interface as a Biomembrane Model. Journal of Physical Chemistry B, 2012, 116, 585-592.	2.6	13
74	A voltammetric phosphate sensor based on heteropolyanion formation at the nitrobenzene/water interface. Electroanalysis, 1993, 5, 215-219.	2.9	12
75	Correlation between reduction potentials and inhibitory effects on Epstein–Barr virus activation by emodin derivatives. Cancer Letters, 2006, 241, 263-267.	7.2	12
76	油水界é¢ã,ä,ªãƒ³ç§»å‹•ã®æ¨™æº−電何 Review of Polarography, 2006, 52, 3-12.	0.1	12
77	A mechanistic study of the oxidation of natural antioxidants at the oil/water interface using scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2008, 612, 241-246.	3.8	12
78	Chemical State Analysis of Tin Oxide Films by Voltammetric Reduction. Journal of the Electrochemical Society, 2011, 158, C341.	2.9	12
79	On Standardizing to Voltammetric Determination of Cupric and Cuprous Oxides Formed on Copper Bunseki Kagaku, 2002, 51, 1145-1151.	0.2	11
80	Diffusion-controlled rate constant of electron transfer at the oil water interface. Journal of Electroanalytical Chemistry, 2004, 571, 201-206.	3.8	11
81	Correlation between reduction potentials and inhibitory effects on Epstein–Barr virus activation of poly-substituted anthraquinones. Cancer Letters, 2005, 225, 193-198.	7.2	11
82	Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1,2-dichloroethane/water interface. Analytical and Bioanalytical Chemistry, 2009, 395, 1055-1061.	3.7	11
83	Voltammetric determination of sulphate ion through heteropoly blue formation. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 278, 217-225.	0.1	10
84	Mechanism of Electrochemical Solvent Extraction of Divalent Metal Ions With Quinolin-8-ol. Analyst, The, 1997, 122, 1597-1600.	3.5	10
85	lon transfer of heteropolytungstate anions at the nitrobenzeneâ^£water interface and its relevance to their antiviral activities. Journal of Electroanalytical Chemistry, 2001, 505, 133-141.	3.8	10
86	Bimolecular-reaction effect on the rate constant of electron transfer at the oil/water interface as studied by scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2009, 628, 27-34.	3.8	10
87	Cathodic reduction of copper oxides. Corrosion Reviews, 2011, 29, .	2.0	10
88	Labelâ€Free Amperometric Detection of Albumin with an Oil/Waterâ€ŧype Flow Cell for Urine Protein Analysis. Electroanalysis, 2012, 24, 1164-1169.	2.9	10
89	Polarizability of o-nitrophenyl ethers/water interface and its applicability to ion-transfer voltammetry Bunseki Kagaku, 1990, 39, 539-545.	0.2	9
90	Ion transfer and photoinduced electron transfer of water-soluble porphyrin at the nitrobenzene water interface. Journal of Electroanalytical Chemistry, 2001, 496, 95-102.	3.8	9

#	Article	IF	CITATIONS
91	Photoinduced Electron Transfer of 5,10,15,20-Tetraphenylporphyrinato Zinc(II) at the Polarized Water/1,2-Dichloroethane Interface. Analytical Sciences, 2004, 20, 1575-1579.	1.6	9
92	Electron transfer across the single micro-water-droplet oil interface using microcapillary injection and microelectrode methods. Journal of Electroanalytical Chemistry, 2005, 575, 27-32.	3.8	9
93	Coextraction of Water into Nitrobenzene with Organic Ions. Journal of Physical Chemistry B, 2015, 119, 6010-6017.	2.6	9
94	Prediction of the Standard Gibbs Energy of Ion Transfer across the 1,2-Dichloroethane/Water Interface. Analytical Sciences, 2018, 34, 919-924.	1.6	9
95	Electrochemical behavior and analytical applications of the ion-selective electrodes based on oil/water interface Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1986, 1986, 956-964.	0.1	8
96	Non-Bornian Ion Solvation Energy. An Approach from Redox Potentials of Heteropoly Oxometalate Anions. Bulletin of the Chemical Society of Japan, 1997, 70, 2473-2481.	3.2	8
97	Selective hydration of alkylammonium ions in nitrobenzene. Physical Chemistry Chemical Physics, 2000, 2, 247-251.	2.8	8
98	Ion Transfer of Reduced Keggin-Type Heteropolymolybdate Anions at the Nitrobenzene/Water Interface and Its Relevance to Their Antitumoral Activities. Electroanalysis, 2001, 13, 384-391.	2.9	8
99	Temperature Effect on the Selective Hydration of Sodium Ion in Nitrobenzene. Analytical Sciences, 2003, 19, 1375-1380.	1.6	8
100	Electron transfer mediated by membrane-bound d-fructose dehydrogenase adsorbed at an oil/water interface. Analytical Biochemistry, 2011, 417, 129-135.	2.4	8
101	A non-Bornian analysis of the Gibbs energy of hydration for organic ions. RSC Advances, 2014, 4, 27634-27641.	3.6	8
102	A Non-Bornian Analysis of the Gibbs Energy of Ion Hydration. Bulletin of the Chemical Society of Japan, 2014, 87, 403-411.	3.2	8
103	Evaluation of the artificial membrane permeability of drugs by digital simulation. European Journal of Pharmaceutical Sciences, 2016, 91, 154-161.	4.0	8
104	Flow-Injection On-line Electrochemical Separation/Determination of Ions Using a Two-Step Oil/Water-Type Flow Cell System. Analytical Sciences, 2010, 26, 375-378.	1.6	7
105	Potential-modulated fluorescence spectroscopy of zwitterionic and dicationic membrane-potential-sensitive dyes at the 1,2-dichloroethane/water interface. Analytical and Bioanalytical Chemistry, 2012, 404, 785-792.	3.7	7
106	Electrochemical characterization of a unique, "neutral―laccase from FlammulinaÂvelutipes. Journal of Bioscience and Bioengineering, 2013, 115, 159-167.	2.2	7
107	Ion transfer at the interface between water and fluorous solvent 1,1,1,2,3,4,4,5,5,5-decafluoropentane. Journal of Electroanalytical Chemistry, 2017, 796, 82-87.	3.8	7
108	Voltammetric Characterization for the Growth of Oxide Films Formed on Copper in Air. Zairyo To Kankyo/ Corrosion Engineering, 2002, 51, 566-570.	0.2	7

#	Article	IF	CITATIONS
109	Voltammetric Study of the Transfer of 12-Molybdosilicate Anion at the Nitrobenzene/Water Interface. Analytical Sciences, 1989, 5, 771-773.	1.6	6
110	Redox Properties of a γ-Pyronyl-Triterpenoid Saponin (Chromosaponin I). Journal of Natural Products, 1995, 58, 1829-1839.	3.0	6
111	Small-type electrolytic cell for ion-transfer polarography with ascending water electrode Bunseki Kagaku, 1996, 45, 1045-1049.	0.2	6
112	Mechanistic study of the electron transfer of L-ascorbic acid at an oil/water interface by a digital simulation of cyclic voltammograms. Bunseki Kagaku, 2003, 52, 665-671.	0.2	6
113	Kinetic Analysis of Electron Transfer across Single Water- Microdroplet/Oil and Oil-Microdroplet/Water Interfaces. Analytical Sciences, 2009, 25, 183-187.	1.6	6
114	Determination of the Electrostatic Potential of Oil-in-Water Emulsion Droplets by Combined Use of Two Membrane Potential-Sensitive Dyes. Analytical Sciences, 2017, 33, 813-819.	1.6	6
115	A Liquid/Liquid-Type Heteropolyanion Reference Electrode for Ion-Transfer Voltammetry Analytical Sciences, 1998, 14, 157-162.	1.6	5
116	Recent Developments in the Electroanalytical Chemistry at an Oil Water Interface. Bunseki Kagaku, 2005, 54, 251-266.	0.2	5
117	Sophisticated Design of PVC Membrane Ion-Selective Electrodes Based on the Mixed Potential Theory. Analytical Chemistry, 2013, 85, 4753-4760.	6.5	5
118	The effect of supporting electrolyte on the electron transfer at mixed self-assembled monolayers containing ferrocene moieties. Journal of Electroanalytical Chemistry, 2015, 754, 75-79.	3.8	5
119	A Strategy for in Silico Prediction of the Membrane Permeability of Drugs. Bulletin of the Chemical Society of Japan, 2018, 91, 1618-1624.	3.2	5
120	Water Interface the Simplest and Best Suited Model for Understanding Biomembranes?. Analytical Sciences, 2019, 35, 361-366.	1.6	5
121	Gibbs Transfer Energies of Ions from a Mixed Solvent of 2H,3H-Decafluoropentane and 1,2-Dichloroethane to Water. Analytical Sciences, 2019, 35, 1031-1035.	1.6	5
122	THEORY OF ION-SELECTIVE ELECTRODES, AMPEROMETRIC ISE AND POTENTIOMETRIC ISE. , 1989, , 559-568.		4
123	Solution chemistry of polyanions: An approach using ion-transfer voltammetry Bunseki Kagaku, 1994, 43, 1-15.	0.2	4
124	Amperometric Determination of Creatinine with a Dialysis Membraneâ€Covered Nitrobenzene/Water Interface for Urine Analysis. Electroanalysis, 2012, 24, 2325-2331.	2.9	4
125	Interpretation of the potential response of PVC membrane ion-selective electrodes based on the mixed potential theory. Journal of Electroanalytical Chemistry, 2012, 668, 107-112.	3.8	4
126	Combined use of two membrane-potential-sensitive dyes for determination of the Galvani potential difference across a biomimetic oil/water interface. Analytical and Bioanalytical Chemistry, 2014, 406, 3407-3414.	3.7	4

#	Article	IF	CITATIONS
127	A role of the membrane solution interface in electron transfer at self-assembled monolayer modified electrodes. Journal of Electroanalytical Chemistry, 2015, 745, 22-27.	3.8	4
128	Solvate and protic ionic liquids from aza-crown ethers: synthesis, thermal properties, and LCST behavior. Physical Chemistry Chemical Physics, 2018, 20, 3118-3127.	2.8	4
129	Computational Prediction of Adsorption Equilibrium for Nonionic Surfactants at the Oil/Water Interface. Langmuir, 2019, 35, 11345-11350.	3.5	4
130	Selective Hydration of a Carboxylate Group in Nitrobenzene. Chemistry Letters, 2001, 30, 558-559.	1.3	3
131	Study of the oxidation processes of catechins by on-line electrolysis/ESI-MS. Bunseki Kagaku, 2004, 53, 547-553.	0.2	3
132	Application of the Mixed-Potential Theory to the Interpretation of the Potential Response of a PVC Membrane Ion-Selective Electrode for Desipramine. Analytical Sciences, 2012, 28, 565-570.	1.6	3
133	The Principle of Water-Content Determination by Karl Fischer Titration. Review of Polarography, 2017, 63, 101-107.	0.1	3
134	Directional Electron Transfer from Ubiquinone-10 to Cytochrome <i>c</i> at a Biomimetic Self-Assembled Monolayer Modified Electrode. Electrochemistry, 2019, 87, 59-64.	1.4	3
135	Ion-Transfer Voltammetry at Fluorous Ether Water Interfaces. Analytical Sciences, 2021, 37, 1379-1383.	1.6	3
136	Redox reactions between ABTS•+ and dihydroxybenzenes as studied by cyclic voltammetry. Analytical Sciences, 2022, 38, 227-230.	1.6	3
137	Theoretical Similarity between Macro- and Nano-interfaces. Review of Polarography, 2013, 59, 21-27.	0.1	2
138	Chemical State Analysis of Tin Oxide Films by Voltammetry using Ammonia Buffer as the Supporting Electrolyte. Zairyo To Kankyo/ Corrosion Engineering, 2013, 62, 16-21.	0.2	2
139	Can Electron-Rich Oxygen (O ^{2–}) Withdraw Electrons from Metal Centers? A DFT Study on Oxoanion-Caged Polyoxometalates. Journal of Physical Chemistry A, 2017, 121, 7684-7689.	2.5	2
140	A Theoretical Approach to the Fluorophilicity of Ions via the Gibbs Energy of Ion Transfer at the Fluorous Solvent/Water Interface. Analytical Sciences, 2021, 37, 1783-1787.	1.6	2
141	Electron Transfer at Liquid/Liquid Interfaces. , 2005, , 171-188.		2
142	Electrocapillarity and the Electric Double Layer Structure at Oil/Water Interfaces. , 1987, , 107-121.		2
143	Quantitative Analysis of Copper Sulfides by Voltammetry Using a Strongly Alkaline Solution. Zairyo To Kankyo/ Corrosion Engineering, 2008, 57, 327-333.	0.2	2
144	Chemical State Analysis of Heat-Treated Tin Plating on Pure Copper and Brass. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 349-354.	0.2	2

#	Article	IF	CITATIONS
145	ELECTROCHEMICAL FORMATION OF HETEROPOLYMOLYBDATE ANIONS AT THE OIL/WATER INTERFACE AND ITS APPLICATION TO OXOANION SENSORS. Analytical Sciences, 1991, 7, 1657-1658.	1.6	1
146	Preparation of the 11-Molybdogermanate(IV) Complex. Chemistry Letters, 1994, 23, 1471-1474.	1.3	1
147	Chemical State Analysis of Copper Corrosion Products Including Patina by Voltammetry. Zairyo To Kankyo/ Corrosion Engineering, 2015, 64, 508-513.	0.2	1
148	Application of Laplace Transform to Electrochemistry. Review of Polarography, 2016, 62, 109-114.	0.1	1
149	Facilitated Transfer of Alkali and Alkaline Earth-metal Ions to the Oil Water Interface Where the Fluorescent Dye diOC ₂ (3) is Adsorbed. Bunseki Kagaku, 2016, 65, 71-77.	0.2	1
150	Fluorination Effect on the Gibbs Transfer Energy for Methylene Group from 1,2-Dichloroethane or 1,1,1,2,3,4,4,5,5,5-Decafluoropentane to Water. Analytical Sciences, 2021, , .	1.6	1
151	DFT Study of α-Keggin-type Iso-polyoxotungstate Anions [H _n W ₁₂ O ₄₀] ^{(8–<i>n</i>)–} (<i>n</i> =1–4): Can [H ₄ W ₁₂ O ₄₀] ^{4–} Exist?. Inorganic Chemistry, 2021, 60, 15336-15342.	4.0	1
152	Ion Transfer of Reduced Keggin-Type Heteropolymolybdate Anions at the Nitrobenzene/Water Interface and Its Relevance to Their Antitumoral Activities. , 2001, 13, 384.		1
153	The Role of Water Molecules in Ion Transfer at the Oil/Water Interface. , 2002, , .		1
154	å^†æ¥µæ›²ç·šÂ·ã,µã,ª,¯ãfªãffã,¯ãfœãf«ã,¿ãf³ãf¡ãf^ãfªï¼¥¼^8)液液界é¢. Electrochemistry, 2009, 77,	8£9-903.	0
155	Mechanism of Multi-Electron Transfer Reactions for Heteropolyanions. Review of Polarography, 2015, 61, 77-86.	0.1	0
156	A Non-Bornian Approach to the Standard Gibbs Energy of Ion Transfer at the Oil Water Interface. Review of Polarography, 2022, 68, 3-14.	0.1	0
157	Computational Prediction of the Adsorption Equilibrium for Ionic Surfactants at the Electrified Oil/Water Interface. ChemElectroChem, 0, , .	3.4	0
158	Computational Prediction of the Adsorption Equilibrium for Ionic Surfactants at the Electrified Oil/Water Interface. ChemElectroChem, 0, , .	3.4	0