Tessa Gargett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8958726/publications.pdf

Version: 2024-02-01

28	1,293	17 h-index	27
papers	citations		g-index
32	32	32	2370 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade. Molecular Therapy, 2016, 24, 1135-1149.	8.2	281
2	The inducible caspase-9 suicide gene system as a ââ,¬Å"safety switchââ,¬Â•to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Frontiers in Pharmacology, 2014, 5, 235.	3.5	280
3	Genome-Wide Identification of Human FOXP3 Target Genes in Natural Regulatory T Cells. Journal of Immunology, 2010, 185, 1071-1081.	0.8	128
4	Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor Tâcells specific for tumor antigen GD2. Cytotherapy, 2015, 17, 487-495.	0.7	90
5	Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunology, Immunotherapy, 2018, 67, 1461-1472.	4.2	68
6	Endothelial, pericyte and tumor cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an excellent target for immunotherapy. Clinical and Translational Immunology, 2020, 9, e1191.	3.8	34
7	Clinical chimeric antigen receptorâ€7 cell therapy: a new and promising treatment modality for glioblastoma. Clinical and Translational Immunology, 2019, 8, e1050.	3.8	33
8	Robust, Reversible Gene Knockdown Using a Single Lentiviral Short Hairpin RNA Vector. Human Gene Therapy, 2010, 21, 1005-1017.	2.7	32
9	BRAF and MEK Inhibition Variably Affect GD2-specific Chimeric Antigen Receptor (CAR) T-Cell Function In Vitro. Journal of Immunotherapy, 2015, 38, 12-23.	2.4	32
10	The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells, 2021, 10, 607.	4.1	32
11	GMâ€CSF signalling blockade and chemotherapeutic agents act in concert to inhibit the function of myeloidâ€derived suppressor cells <i>in vitro</i>). Clinical and Translational Immunology, 2016, 5, e119.	3.8	30
12	Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype. Cytotherapy, 2019, 21, 593-602.	0.7	30
13	Induction of antigenâ€positive cell death by the expression of Perforin, but not DTa, from a DNA vaccine enhances the immune response. Immunology and Cell Biology, 2014, 92, 359-367.	2.3	29
14	Logic-gated approaches to extend the utility of chimeric antigen receptor T-cell technology. Biochemical Society Transactions, 2018, 46, 391-401.	3.4	26
15	Development of CD4+CD25+FoxP3+ regulatory T cells from cord blood hematopoietic progenitor cells. Journal of Leukocyte Biology, 2009, 85, 445-451.	3.3	24
16	Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies. Cancers, 2021, 13, 2225.	3.7	21
17	<scp>DNA</scp> vaccines encoding membraneâ€bound or secreted forms of heat shock protein 70 exhibit improved potency. European Journal of Immunology, 2014, 44, 1992-2002.	2.9	20
18	Increase in DNA vaccine efficacy by virosome delivery and coâ€expression of a cytolytic protein. Clinical and Translational Immunology, 2014, 3, e18.	3.8	19

#	Article	IF	CITATION
19	Phase I Trial of Inducible Caspase 9 T Cells in Adult Stem Cell Transplant Demonstrates Massive Clonotypic Proliferative Potential and Long-term Persistence of Transgenic T Cells. Clinical Cancer Research, 2019, 25, 1749-1755.	7.0	18
20	A novel challenge model to evaluate the efficacy of hepatitis C virus vaccines in mice. Vaccine, 2014, 32, 3409-3416.	3.8	17
21	Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency. Human Vaccines and Immunotherapeutics, 2014, 10, 2679-2683.	3.3	14
22	Characterising Distinct Migratory Profiles of Infiltrating T-Cell Subsets in Human Glioblastoma. Frontiers in Immunology, 2022, 13, 850226.	4.8	13
23	Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag. Virus Research, 2014, 192, 25-33.	2.2	6
24	Thymic hyperplasia following double immune checkpoint inhibitor therapy in two patients with stage IV melanoma. Asia-Pacific Journal of Clinical Oncology, 2019, 15, 383-386.	1.1	6
25	Comment on "KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study― Leukemia Research, 2017, 55, 55-57.	0.8	3
26	Positron Emission Tomographic Imaging of Tumor Cell Death Using Zirconium-89-Labeled APOMAB® Following Cisplatin Chemotherapy in Lung and Ovarian Cancer Xenograft Models. Molecular Imaging and Biology, 2021, 23, 914-928.	2.6	3
27	Potent Stimulation of the Androgen Receptor Instigates a Viral Mimicry Response in Prostate Cancer. Cancer Research Communications, 2022, 2, 706-724.	1.7	3
28	Abstract 3159: In vitro characterization of third-generation chimeric antigen receptor T cells directed toward GD2-expressing and BRAF-inhibitor resistant melanoma target cells 2015		0