
Marçal Pastor-Anglada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8958274/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	OncomiRs miR-106a and miR-17 negatively regulate the nucleoside-derived drug transporter hCNT1. Cellular and Molecular Life Sciences, 2021, 78, 7505-7518.	5.4	2
2	FMS-like tyrosine kinase 3 (FLT3) modulates key enzymes of nucleotide metabolism implicated in cytarabine responsiveness in pediatric acute leukemia. Pharmacological Research, 2020, 151, 104556.	7.1	3
3	From Inflammation to the Onset of Fibrosis through A2A Receptors in Kidneys from Deceased Donors. International Journal of Molecular Sciences, 2020, 21, 8826.	4.1	4
4	Expression of the nucleoside transporters hENT1 (SLC29) and hCNT1 (SLC28) in pediatric acute myeloid leukemia. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 1379-1388.	1.1	6
5	Inhibitor selectivity of CNTs and ENTs. Xenobiotica, 2019, 49, 840-851.	1.1	4
6	Deficiency of perforin and hCNT1, a novel inborn error of pyrimidine metabolism, associated with a rapidly developing lethal phenotype due to multi-organ failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1182-1191.	3.8	8
7	Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PP1. FASEB Journal, 2019, 33, 3841-3850.	0.5	10
8	Emerging Roles of Nucleoside Transporters. Frontiers in Pharmacology, 2018, 9, 606.	3.5	105
9	Who Is Who in Adenosine Transport. Frontiers in Pharmacology, 2018, 9, 627.	3.5	85
10	Intestinal Nucleoside Transporters: Function, Expression, and Regulation. , 2018, 8, 1003-1017.		35
11	Response to "Tenofovir Disoproxil Fumarate Is Not an Inhibitor of Human Organic Cation Transporter 1― Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 343-345.	2.5	5
12	Role of drug-dependent transporter modulation on the chemosensitivity of cholangiocarcinoma. Oncotarget, 2017, 8, 90185-90196.	1.8	6
13	P-glycoprotein (<i>ABCB1</i>) activity decreases raltegravir disposition in primary CD4+P-gp ^{high} cells and correlates with HIV-1 viral load. Journal of Antimicrobial Chemotherapy, 2016, 71, 2782-2792.	3.0	16
14	Reduced Adenosine Uptake and Its Contribution to Signaling that Mediates Profibrotic Activation in Renal Tubular Epithelial Cells: Implication in Diabetic Nephropathy. PLoS ONE, 2016, 11, e0147430.	2.5	27
15	Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions. Frontiers in Pharmacology, 2016, 7, 175.	3.5	16
16	Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir. Cellular and Molecular Life Sciences, 2016, 73, 4559-4575.	5.4	16
17	Pharmacogenomic analyzis of the responsiveness of gastrointestinal tumor cell lines to drug therapy: A transportome approach. Pharmacological Research, 2016, 113, 364-375.	7.1	4
18	Phosphorylation of RS1 (<i>RSC1A1</i>) Steers Inhibition of Different Exocytotic Pathways for Glucose Transporter SGLT1 and Nucleoside Transporter CNT1, and an RS1-Derived Peptide Inhibits Glucose Absorption. Molecular Pharmacology, 2016, 89, 118-132.	2.3	22

#	Article	IF	CITATIONS
19	Transportome Profiling Identifies Profound Alterations in Crohn's Disease Partially Restored by Commensal Bacteria. Journal of Crohn's and Colitis, 2016, 10, 850-859.	1.3	21
20	Galectinâ€4 interacts with the drug transporter human concentrative nucleoside transporter 3 to regulate its function. FASEB Journal, 2016, 30, 544-554.	0.5	11
21	FLT3 is implicated in cytarabine transport by human equilibrative nucleoside transporter 1 in pediatric acute leukemia. Oncotarget, 2016, 7, 49786-49799.	1.8	12
22	CD69 expression potentially predicts response to bendamustine and its modulation by ibrutinib or idelalisib enhances cytotoxic effect in chronic lymphocytic leukemia. Oncotarget, 2016, 7, 5507-5520.	1.8	23
23	Ribonucleotide reductase is an effective target to overcome gemcitabine resistance in gemcitabine-resistant pancreatic cancer cells with dual resistant factors. Journal of Pharmacological Sciences, 2015, 127, 319-325.	2.5	45
24	Human organic cation transporter 1 (hOCT1) as a mediator of bendamustine uptake and cytotoxicity in chronic lymphocytic leukemia (CLL) cells. Pharmacogenomics Journal, 2015, 15, 363-371.	2.0	18
25	Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Frontiers in Pharmacology, 2015, 6, 13.	3.5	84
26	Fluorescent Nucleoside Derivatives as a Tool for the Detection of Concentrative Nucleoside Transporter Activity Using Confocal Microscopy and Flow Cytometry. Molecular Pharmaceutics, 2015, 12, 2158-2166.	4.6	8
27	Role of SLC22A1 polymorphic variants in drug disposition, therapeutic responses, and drug–drug interactions. Pharmacogenomics Journal, 2015, 15, 473-487.	2.0	34
28	Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans. American Journal of Physiology - Renal Physiology, 2014, 307, G673-G688.	3.4	29
29	Nucleoside transporters and human organic cation transporter 1 determine the cellular handling of DNAâ€methyltransferase inhibitors. British Journal of Pharmacology, 2014, 171, 3868-3880.	5.4	21
30	rCNT2 extracellular cysteines, Cys ⁶¹⁵ and Cys ⁶⁴⁹ , are important for maturation and sorting to the plasma membrane. FEBS Letters, 2014, 588, 4382-4389.	2.8	2
31	Functional crosstalk between the adenosine transporter CNT3 and purinergic receptors in the biliary epithelia. Journal of Hepatology, 2014, 61, 1337-1343.	3.7	10
32	Ribavirin Uptake into Human Hepatocyte HHL5 Cells Is Enhanced by Interferon-α via up-Regulation of the Human Concentrative Nucleoside Transporter (hCNT2). Molecular Pharmaceutics, 2014, 11, 3223-3230.	4.6	8
33	Adenosine A2B receptor-mediated VEGF induction promotes diabetic glomerulopathy. Laboratory Investigation, 2013, 93, 135-144.	3.7	36
34	Hypoxia and P1 receptor activation regulate the high-affinity concentrative adenosine transporter CNT2Âin differentiated neuronal PC12 cells. Biochemical Journal, 2013, 454, 437-445.	3.7	26
35	Transporter pharmacogenetics: do we need function? Do we need motion?. Pharmacogenomics, 2013, 14, 1537-1540.	1.3	1
36	FLT3 Is Involved In Ara-C Transport By Human Equilibrative Nucleoside Transporter (hENT1) In Pediatric Acute Leukemia. Blood, 2013, 122, 3844-3844.	1.4	4

#	Article	IF	CITATIONS
37	Structural determinants for rCNT2 sorting to the plasma membrane of polarized and non-polarized cells. Biochemical Journal, 2012, 442, 517-525.	3.7	7
38	Functional analysis of the human concentrative nucleoside transporter-1 variant hCNT1S546P provides insight into the sodium-binding pocket. American Journal of Physiology - Cell Physiology, 2012, 302, C257-C266.	4.6	12
39	Role of the Transporter Regulator Protein (RS1) in the Modulation of Concentrative Nucleoside Transporters (CNTs) in Epithelia. Molecular Pharmacology, 2012, 82, 59-67.	2.3	12
40	Enhancement of fludarabine sensitivity by all-trans-retinoic acid in chronic lymphocytic leukemia cells. Haematologica, 2012, 97, 943-951.	3.5	17
41	Aquaporin 3 (AQP3) participates in the cytotoxic response to nucleoside-derived drugs. BMC Cancer, 2012, 12, 434.	2.6	28
42	Functional outcome of a novel SLC29A3 mutation identified in a patient with H syndrome. Biochemical and Biophysical Research Communications, 2012, 428, 532-537.	2.1	10
43	Up-regulation of FXR isoforms is not required for stimulation of the expression of genes involved in the lack of response of colon cancer to chemotherapy. Pharmacological Research, 2012, 66, 419-427.	7.1	9
44	A Mild Form of SLC29A3 Disorder: A Frameshift Deletion Leads to the Paradoxical Translation of an Otherwise Noncoding mRNA Splice Variant. PLoS ONE, 2012, 7, e29708.	2.5	50
45	No Correlation between the Expression of FXR and Genes Involved in Multidrug Resistance Phenotype of Primary Liver Tumors. Molecular Pharmaceutics, 2012, 9, 1693-1704.	4.6	73
46	New role of the human equilibrative nucleoside transporter 1 (hENT1) in Epithelialâ€ŧoâ€mesenchymal transition in renal tubular cells. Journal of Cellular Physiology, 2012, 227, 1521-1528.	4.1	15
47	Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Medicinal Research Reviews, 2012, 32, 428-457.	10.5	57
48	Drug uptake transporters in antiretroviral therapy. , 2011, 132, 268-279.		62
49	Expression and Distribution of Nucleoside Transporter Proteins in the Human Syncytiotrophoblast. Molecular Pharmacology, 2011, 80, 809-817.	2.3	32
50	Translocation of Nucleoside Analogs Across the Plasma Membrane in Hematologic Malignancies. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1324-1340.	1.1	15
51	Effects of Na+ and H+ on steady-state and presteady-state currents of the human concentrative nucleoside transporter 3 (hCNT3). Pflugers Archiv European Journal of Physiology, 2010, 460, 617-632.	2.8	6
52	Link between highâ€affinity adenosine concentrative nucleoside transporterâ€2 (CNT2) and energy metabolism in intestinal and liver parenchymal cells. Journal of Cellular Physiology, 2010, 225, 620-630.	4.1	18
53	Nitric oxide reduces SLC29A1 promoter activity and adenosine transport involving transcription factor complex hCHOP–C/EBPα in human umbilical vein endothelial cells from gestational diabetes. Cardiovascular Research, 2010, 86, 45-54.	3.8	49
54	All-trans-retinoic Acid Promotes Trafficking of Human Concentrative Nucleoside Transporter-3 (hCNT3) to the Plasma Membrane by a TGF-β1-mediated Mechanism. Journal of Biological Chemistry, 2010, 285, 13589-13598.	3.4	21

#	Article	IF	CITATIONS
55	Different N-Terminal Motifs Determine Plasma Membrane Targeting of the Human Concentrative Nucleoside Transporter 3 in Polarized and Nonpolarized Cells. Molecular Pharmacology, 2010, 78, 795-803.	2.3	15
56	The Human Concentrative Nucleoside Transporter-3 C602R Variant Shows Impaired Sorting to Lipid Rafts and Altered Specificity for Nucleoside-Derived Drugs. Molecular Pharmacology, 2010, 78, 157-165.	2.3	19
57	Role of Nucleoside Transporters in Nucleoside-Derived Drug Sensitivity. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 335-346.	1.1	10
58	Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics, 2010, 11, 809-841.	1.3	60
59	Uridine Metabolism in HIV-1-Infected Patients: Effect of Infection, of Antiretroviral Therapy and of HIV-1/ART-Associated Lipodystrophy Syndrome. PLoS ONE, 2010, 5, e13896.	2.5	11
60	A splice variant of the <i>SLC28A3</i> gene encodes a novel human concentrative nucleoside transporterâ€3 (hCNT3) protein localized in the endoplasmic reticulum. FASEB Journal, 2009, 23, 172-182.	0.5	42
61	Transport of Nucleoside Analogs Across the Plasma Membrane: A Clue to Understanding Drug-Induced Cytotoxicity. Current Drug Metabolism, 2009, 10, 347-358.	1.2	38
62	Adenosine mediates transforming growth factorâ€beta 1 release in kidney glomeruli of diabetic rats. FEBS Letters, 2009, 583, 3192-3198.	2.8	39
63	TGF-β1 inhibits expression and activity of hENT1 in a nitric oxide-dependent manner in human umbilical vein endothelium. Cardiovascular Research, 2009, 82, 458-467.	3.8	20
64	Gemcitabine chemoresistance in pancreatic cancer: Molecular mechanisms and potential solutions. Scandinavian Journal of Gastroenterology, 2009, 44, 782-786.	1.5	113
65	Transport of Lamivudine [(-)-β-l-2′,3′-Dideoxy-3′-thiacytidine] and High-Affinity Interaction of Nucleoside Reverse Transcriptase Inhibitors with Human Organic Cation Transporters 1, 2, and 3. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 252-261.	2.5	125
66	Nucleoside Transporter Proteins. Current Vascular Pharmacology, 2009, 7, 426-434.	1.7	135
67	High <scp>D</scp> â€glucose reduces <i>SLC29A1</i> promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelium. Journal of Cellular Physiology, 2008, 215, 645-656.	4.1	27
68	Compensatory effects of the human nucleoside transporters on the response to nucleoside-derived drugs in breast cancer MCF7 cells. Biochemical Pharmacology, 2008, 75, 639-648.	4.4	23
69	Adenoviral-mediated overexpression of human equilibrative nucleoside transporter 1 (hENT1) enhances gemcitabine response in human pancreatic cancer. Biochemical Pharmacology, 2008, 76, 322-329.	4.4	40
70	Functional Characterization of a Nucleoside-Derived Drug Transporter Variant (hCNT3C602R) Showing Altered Sodium-Binding Capacity. Molecular Pharmacology, 2008, 73, 379-386.	2.3	28
71	Identification of TIGAR in the equilibrative nucleoside transporter 2-mediated response to fludarabine in chronic lymphocytic leukemia cells. Haematologica, 2008, 93, 1843-1851.	3.5	20
72	Expression and Functionality of Anti-Human Immunodeficiency Virus and Anticancer Drug Uptake Transporters in Immune Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 558-567.	2.5	66

#	Article	IF	CITATIONS
73	Expression and hepatobiliary transport characteristics of the concentrative and equilibrative nucleoside transporters in sandwich-cultured human hepatocytes. American Journal of Physiology - Renal Physiology, 2008, 295, G570-G580.	3.4	61
74	Interaction of nucleosideâ€derivatives with the human Na ⁺ /nucleoside cotransporters CNT1 and CNT3. FASEB Journal, 2008, 22, 133-133.	0.5	1
75	In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1809-R1822.	1.8	126
76	Transcription factors involved in the expression of SLC28 genes in human liver parenchymal cells. Biochemical and Biophysical Research Communications, 2007, 353, 381-388.	2.1	20
77	Role of CNT3 in the transepithelial flux of nucleosides and nucleoside-derived drugs. Journal of Physiology, 2007, 582, 1249-1260.	2.9	57
78	Altered Expression of Nucleoside Transporter Genes (SLC28 and SLC29) in Adipose Tissue from HIV-1–Infected Patients. Antiviral Therapy, 2007, 12, 853-864.	1.0	21
79	Bile acids alter the subcellular localization of CNT2 (concentrative nucleoside cotransporter) and increase CNT2-related transport activity in liver parenchymal cells. Biochemical Journal, 2006, 395, 337-344.	3.7	22
80	Human equilibrative nucleoside transporter-1 (hENT1) is required for the transcriptomic response of the nucleoside-derived drug 5′-DFUR in breast cancer MCF7 cells. Biochemical Pharmacology, 2006, 72, 1646-1656.	4.4	27
81	Nitric oxide reduces adenosine transporter ENT1 gene (SLC29A1) promoter activity in human fetal endothelium from gestational diabetes. Journal of Cellular Physiology, 2006, 208, 451-460.	4.1	48
82	Expression of the High-Affinity Fluoropyrimidine-Preferring Nucleoside Transporter hCNT1 Correlates with Decreased Disease-Free Survival in Breast Cancer. Oncology, 2006, 70, 238-244.	1.9	29
83	Extracellular adenosine activates AMP-dependent protein kinase (AMPK). Journal of Cell Science, 2006, 119, 1612-1621.	2.0	87
84	Expression of human equilibrative nucleoside transporter 1 (hENT1) and its correlation with gemcitabine uptake and cytotoxicity in mantle cell lymphoma. Haematologica, 2006, 91, 895-902.	3.5	63
85	3′-Azido-2′,3′-Dideoxythymidine (Zidovudine) Uptake Mechanisms in T Lymphocytes. Antiviral Therapy, 2 11, 803-812.	006. 1.0	18
86	Expression of concentrative nucleoside transporters SLC28 (CNT1, CNT2, and CNT3) along the rat nephron: Effect of diabetes. Kidney International, 2005, 68, 665-672.	5.2	41
87	Mechanisms Implicated in the Response of System A to Hypertonic Stress and Amino Acid Deprivation Still Can Be Different. Journal of General Physiology, 2005, 125, 41-42.	1.9	4
88	Equilibrative Nucleoside Transporter 1 Expression Is Downregulated by Hypoxia in Human Umbilical Vein Endothelium. Circulation Research, 2005, 97, 16-24.	4.5	77
89	Cell entry and export of nucleoside analogues. Virus Research, 2005, 107, 151-164.	2.2	127
90	Long Term Endocrine Regulation of Nucleoside Transporters in Rat Intestinal Epithelial Cells. Journal of General Physiology, 2004, 124, 505-512.	1.9	32

#	Article	IF	CITATIONS
91	ATP-Sensitive K + Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A 1 Adenosine Receptors. Molecular and Cellular Biology, 2004, 24, 2710-2719.	2.3	51
92	Electrophysiological Characterization of the Human Na+/Nucleoside Cotransporter 1 (hCNT1) and Role of Adenosine on hCNT1 Function. Journal of Biological Chemistry, 2004, 279, 8999-9007.	3.4	41
93	Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats. Journal of Neurochemistry, 2004, 90, 883-893.	3.9	45
94	Expression of the nucleosideâ€derived drug transporters hCNT1, hENT1 and hENT2 in gynecologic tumors. International Journal of Cancer, 2004, 112, 959-966.	5.1	84
95	Up-regulation of the high-affinity pyrimidine-preferring nucleoside transporter concentrative nucleoside transporter 1 by tumor necrosis factor-alpha and interleukin-6 in liver parenchymal cells. Journal of Hepatology, 2004, 41, 538-544.	3.7	26
96	Equilibrative Nucleoside Transporter-2 (ENT2) Protein Correlates with Ex-Vivo Sensitivity to Fludarabine in Chronic Lymphocytic Leukemia (CLL)-Cells Blood, 2004, 104, 2079-2079.	1.4	0
97	Interaction of nucleoside inhibitors of HIV-1 reverse transcriptase with the concentrative nucleoside transporter-1 (SLC28A1). Antiviral Therapy, 2004, 9, 993-1002.	1.0	12
98	Interaction of Nucleoside Inhibitors of HIV-1 Reverse Transcriptase with the Concentrative Nucleoside Transporter-1 (Slc28A1). Antiviral Therapy, 2004, 9, 993-1002.	1.0	39
99	The Osmoregulatory and the Amino Acid-regulated Responses of System A Are Mediated by Different Signal Transduction Pathways. Journal of General Physiology, 2003, 122, 5-16.	1.9	32
100	Physiological characteristics of allo-cholic acid. Journal of Lipid Research, 2003, 44, 84-92.	4.2	19
101	Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia. Blood, 2003, 101, 2328-2334.	1.4	101
102	Interferon-Î ³ regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways. Biochemical Journal, 2003, 375, 777-783.	3.7	41
103	Nucleoside transporter profiles in human pancreatic cancer cells: role of hCNT1 in 2',2'-difluorodeoxycytidine- induced cytotoxicity. Clinical Cancer Research, 2003, 9, 5000-8.	7.0	144
104	Concentrative Nucleoside Transporter (rCNT1) Is Targeted to the Apical Membrane through the Hepatic Transcytotic Pathway. Experimental Cell Research, 2002, 281, 77-85.	2.6	42
105	Cell-cycle-dependent regulation of CNT1, a concentrative nucleoside transporter involved in the uptake of cell-cycle-dependent nucleoside-derived anticancer drugs. Biochemical and Biophysical Research Communications, 2002, 296, 575-579.	2.1	40
106	Developmental regulation of the concentrative nucleoside transporters CNT1 and CNT2 in rat liver. Journal of Hepatology, 2001, 34, 873-880.	3.7	40
107	Complex regulation of nucleoside transporter expression in epithelial and immune system cells. Molecular Membrane Biology, 2001, 18, 81-85.	2.0	80
108	Role of the Human Concentrative Nucleoside Transporter (hCNT1) In the Cytotoxic Action of 5[Prime]-Deoxy-5-fluorouridine, an Active Intermediate Metabolite of Capecitabine, a Novel Oral Anticancer Drug. Molecular Pharmacology, 2001, 59, 1542-1548.	2.3	79

#	Article	IF	CITATIONS
109	Lipopolysaccharide-induced Apoptosis of Macrophages Determines the Up-regulation of Concentrative Nucleoside Transporters Cnt1 and Cnt2 through Tumor Necrosis Factor-1±-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2001, 276, 30043-30049.	3.4	75
110	Macrophages require different nucleoside transport systems for proliferation and activation. FASEB Journal, 2001, 15, 1979-1988.	0.5	94
111	Nitric oxide regulates nucleoside transport in activated B lymphocytes. Journal of Leukocyte Biology, 2000, 67, 345-349.	3.3	26
112	Selective loss of nucleoside carrier expression in rat hepatocarcinomas. Hepatology, 2000, 32, 239-246.	7.3	55
113	Electrogenic uptake of nucleosides and nucleoside-derived drugs by the human nucleoside transporter 1 (hCNT1) expressed inXenopus laevisoocytes. FEBS Letters, 2000, 481, 137-140.	2.8	52
114	Differential expression and regulation of nucleoside transport systems in rat liver parenchymal and hepatoma cells. Hepatology, 1998, 28, 1504-1511.	7.3	73
115	Regulation of Nucleoside Transport by Lipopolysaccharide, Phorbol Esters, and Tumor Necrosis Factor-α in Human B-lymphocytes. Journal of Biological Chemistry, 1998, 273, 26939-26945.	3.4	56
116	Na+,K+-ATPase Expression in Maleic-Acid-Induced Fanconi Syndrome in Rats. Clinical Science, 1997, 92, 247-253.	4.3	12
117	Expression of Sodium-Dependent Purine Nucleoside Carrier (SPNT) mRNA Correlates with Nucleoside Transport Activity in Rat Liver. Biochemical and Biophysical Research Communications, 1997, 233, 572-575.	2.1	18
118	Molecular Cloning of a Bovine Renal G-Protein Coupled Receptor Gene (bRGR): Regulation of bRGR mRNA Levels by Amino Acid Availability. Biochemical and Biophysical Research Communications, 1997, 238, 107-112.	2.1	3
119	Cytoskeletal-dependent activation of system A for neutral amino acid transport in osmotically stressed mammalian cells: A role for system A in the intracellular accumulation of osmolytes. , 1997, 173, 343-350.		11
120	Nucleoside uptake in rat liver parenchymal cells. Biochemical Journal, 1996, 317, 835-842.	3.7	27
121	Effects of cyclosporine A on Na,K-ATPase expression in the renal epithelial cell line NBL-1. Kidney International, 1996, 50, 1483-1489.	5.2	19
122	Ontogeny of L-Alanine Uptake in Plasma Membrane Vesicles from Rat Liver. Pediatric Research, 1995, 38, 81-85.	2.3	1
123	Na+,K+-ATPase expression during the early phase of liver growth after partial hepatectomy. FEBS Letters, 1995, 362, 85-88.	2.8	16
124	Alanine uptake by liver of mid-lactating rats. Metabolism: Clinical and Experimental, 1993, 42, 1109-1115.	3.4	4
125	Up-regulation of system A activity in the regenerating rat liver. FEBS Letters, 1993, 329, 189-193.	2.8	23
126	Early induction of Na+-dependent uridine uptake in the regenerating rat liver. FEBS Letters, 1993, 316, 85-88.	2.8	29

#	Article	IF	CITATIONS
127	Enhanced N-system activity for neutral amino acid transport in plasma membrane vesicles from livers of genetically obese Zucker rats. Biochemical Society Transactions, 1990, 18, 1249-1249.	3.4	1
128	Role of substrate availability on net <scp>l</scp> -lactate uptake by liver of fed and 24-h-starved rats. Biochemical Society Transactions, 1990, 18, 995-996.	3.4	0
129	Protein synthesis-independent induction of ornithine decarboxylase activity in isolated rat hepatocytes: effect of epidermal growth factor and dexamethasone. Biochemical Society Transactions, 1990, 18, 1220-1221.	3.4	1
130	Effects of epidermal growth factor (urogastrone) on gluconeogenesis, glucose oxidation, and glycogen synthesis in isolated rat hepatocytes. Biochemistry and Cell Biology, 1989, 67, 724-729.	2.0	21
131	Na+-Dependent Alanine Transport in Plasma Membrane Vesicles from Late-Pregnant Rat Livers. Pediatric Research, 1989, 26, 448-451.	2.3	16
132	Correspondence. Metabolism: Clinical and Experimental, 1989, 38, 290-291.	3.4	4
133	Carrier-mediated uptake of L-(+)-lactate in plasma membrane vesicles from rat liver. FEBS Letters, 1988, 235, 224-228.	2.8	18
134	Hepatic uptake of gluconeogenic substrates in late-pregnant and mid-lactating rats. Bioscience Reports, 1987, 7, 587-592.	2.4	11
135	Urinary amino acid excretion in the pregnant rat. Nutrition Research, 1986, 6, 709-718.	2.9	3
136	Essential amino acid splanchnic bed exchanges in the rat: effects of pregnancy and food deprivation. Biochemical Society Transactions, 1986, 14, 1074-1075.	3.4	3