Ichiro Hiratani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957403/publications.pdf

Version: 2024-02-01

36 papers 2,916 citations

361413 20 h-index 345221 36 g-index

41 all docs

41 docs citations

times ranked

41

3302 citing authors

#	Article	IF	CITATIONS
1	Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Research, 2010, 20, 761-770.	5. 5	526
2	Global Reorganization of Replication Domains During Embryonic Stem Cell Differentiation. PLoS Biology, 2008, 6, e245.	5.6	496
3	Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Research, 2010, 20, 155-169.	5.5	287
4	Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres. Developmental Cell, 2013, 24, 635-648.	7.0	155
5	G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19363-19368.	7.1	134
6	Replication timing and transcriptional control: beyond cause and effectâ€"part II. Current Opinion in Genetics and Development, 2009, 19, 142-149.	3.3	133
7	Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16861-16866.	7.1	110
8	Genome-scale analysis of replication timing: from bench to bioinformatics. Nature Protocols, 2011, 6, 870-895.	12.0	110
9	Replication timing as an epigenetic mark. Epigenetics, 2009, 4, 93-97.	2.7	91
10	Space and Time in the Nucleus: Developmental Control of Replication Timing and Chromosome Architecture. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 143-153.	1.1	91
11	Epigenetic differences between naìve and primed pluripotent stem cells. Cellular and Molecular Life Sciences, 2018, 75, 1191-1203.	5.4	84
12	ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data. BMC Bioinformatics, 2008, 9, 530.	2.6	80
13	Replication Timing: A Fingerprint for Cell Identity and Pluripotency. PLoS Computational Biology, 2011, 7, e1002225.	3.2	78
14	Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Research, 2010, 18, 127-136.	2.2	66
15	Genome-wide stability of the DNA replication program in single mammalian cells. Nature Genetics, 2019, 51, 529-540.	21.4	66
16	Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization. Nature Genetics, 2019, 51, 1356-1368.	21.4	61
17	Selective degradation of excess Ldb1 by Rnf12/RLIM confers proper Ldb1 expression levels and Xlim-1/Ldb1 stoichiometry in Xenopus organizer functions. Development (Cambridge), 2003, 130, 4161-4175.	2.5	43
18	Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?. GigaScience, 2020, 9, .	6.4	39

#	Article	IF	CITATIONS
19	Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. Nature Communications, 2018, 9, 1387.	12.8	35
20	The Eleanor ncRNAs activate the topological domain of the ESR1 locus to balance against apoptosis. Nature Communications, 2019, 10, 3778.	12.8	28
21	Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles. Methods in Molecular Biology, 2018, 1861, 221-245.	0.9	22
22	DNA Replication Timing Is Maintained Genome-Wide in Primary Human Myoblasts Independent of D4Z4 Contraction in FSH Muscular Dystrophy. PLoS ONE, 2011, 6, e27413.	2.5	21
23	Chromatin folding and DNA replication inhibition mediated by a highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex. Scientific Reports, 2016, 6, 24712.	3.3	20
24	Mapping replication timing domains genome wide in single mammalian cells with single-cell DNA replication sequencing. Nature Protocols, 2020, 15, 4058-4100.	12.0	19
25	Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization. Biophysical Journal, 2020, 118, 2220-2228.	0.5	17
26	Functional Domains of the LIM Homeodomain Protein Xlim-1 Involved in Negative Regulation, Transactivation, and Axis Formation in Xenopus Embryos. Developmental Biology, 2001, 229, 456-467.	2.0	16
27	Regulation of mammalian 3D genome organization and histone H3K9 dimethylation by H3K9 methyltransferases. Communications Biology, 2021, 4, 571.	4.4	12
28	DNA Replication Timing Enters the Single-Cell Era. Genes, 2019, 10, 221.	2.4	11
29	Autosomal Lyonization of Replication Domains During Early Mammalian Development. Advances in Experimental Medicine and Biology, 2010, 695, 41-58.	1.6	11
30	Cell cycle dynamics and developmental dynamics of the 3D genome: toward linking the two timescales. Current Opinion in Genetics and Development, 2022, 73, 101898.	3.3	11
31	Highly rigid H3.1/H3.2–H3K9me3 domains set a barrier for cell fate reprogramming in trophoblast stem cells. Genes and Development, 2022, 36, 84-102.	5.9	10
32	Dynamics of transcription-mediated conversion from euchromatin to facultative heterochromatin at the Xist promoter by Tsix. Cell Reports, 2021, 34, 108912.	6.4	9
33	SAF-A promotes origin licensing and replication fork progression to ensure robust DNA replication. Journal of Cell Science, 2022, 135, .	2.0	9
34	The Temporal Order of DNA Replication Shaped by Mammalian DNA Methyltransferases. Cells, 2021, 10, 266.	4.1	6
35	Formation of a multiâ€layered 3â€dimensional structure of the heterochromatin compartment during early mammalian development. Development Growth and Differentiation, 2021, 63, 5-17.	1.5	4
36	Large-Scale Chromatin Rearrangements in Cancer. Cancers, 2022, 14, 2384.	3.7	3

3