Maria-Luisa Del Rio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957368/publications.pdf

Version: 2024-02-01

36 papers 1,385 citations

16 h-index 395702 33 g-index

37 all docs

37 docs citations

37 times ranked

2042 citing authors

#	Article	IF	Citations
1	CD103â^' and CD103+ Bronchial Lymph Node Dendritic Cells Are Specialized in Presenting and Cross-Presenting Innocuous Antigen to CD4+ and CD8+ T Cells. Journal of Immunology, 2007, 178, 6861-6866.	0.8	266
2	Development and functional specialization of CD103 $<$ sup $>+<$ sup $>$ dendritic cells. Immunological Reviews, 2010, 234, 268-281.	6.0	241
3	Induction of Tolerance to Innocuous Inhaled Antigen Relies on a CCR7-Dependent Dendritic Cell-Mediated Antigen Transport to the Bronchial Lymph Node. Journal of Immunology, 2006, 177, 7346-7354.	0.8	194
4	HVEM/LIGHT/BTLA/CD160 cosignaling pathways as targets for immune regulation. Journal of Leukocyte Biology, 2009, 87, 223-235.	3.3	131
5	Value of Indirect Hemagglutination and Coagglutination Tests for Serotyping Haemophilus parasuis. Journal of Clinical Microbiology, 2003, 41, 880-882.	3.9	57
6	CX3CR1+c-kit+ Bone Marrow Cells Give Rise to CD103+ and CD103â^ Dendritic Cells with Distinct Functional Properties. Journal of Immunology, 2008, 181, 6178-6188.	0.8	41
7	PD-1/PD-L1, PD-1/PD-L2, and other co-inhibitory signaling pathways in transplantation. Transplant International, 2008, 21, ???-???.	1.6	40
8	HVEM, a cosignaling molecular switch, and its interactions with BTLA, CD160 and LIGHT. Cellular and Molecular Immunology, 2019, 16, 679-682.	10.5	37
9	Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma. International Journal of Molecular Sciences, 2018, 19, 752.	4.1	34
10	CD160 serves as a negative regulator of NKT cells in acute hepatic injury. Nature Communications, 2019, 10, 3258.	12.8	29
11	Antibody-mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation. European Journal of Immunology, 2005, 35, 3545-3560.	2.9	28
12	Molecular characterization of Haemophilus parasuis ferric hydroxamate uptake (fhu) genes and constitutive expression of the FhuA receptor. Veterinary Research, 2006, 37, 49-59.	3.0	27
13	Detection of protein on BTLAlow cells and in vivo antibody-mediated down-modulation of BTLA on lymphoid and myeloid cells of C57BL/6 and BALB/c BTLA allelic variants. Immunobiology, 2010, 215, 570-578.	1.9	26
14	Selective Blockade of Herpesvirus Entry Mediator–B and T Lymphocyte Attenuator Pathway Ameliorates Acute Graft-versus-Host Reaction. Journal of Immunology, 2012, 188, 4885-4896.	0.8	25
15	aroA gene PCR-RFLP diversity patterns in Haemophilus parasuis and Actinobacillus species. Research in Veterinary Science, 2006, 80, 55-61.	1.9	24
16	Identification and characterization of the TonB region and its role in transferrin-mediated iron acquisition inHaemophilus parasuis. FEMS Immunology and Medical Microbiology, 2005, 45, 75-86.	2.7	21
17	LIGHT/HVEM/LTβR Interaction as a Target for the Modulation of the Allogeneic Immune Response in Transplantation. American Journal of Transplantation, 2013, 13, 541-551.	4.7	16
18	B- and T-Lymphocyte Attenuator Targeting Protects Against the Acute Phase of Graft Versus Host Reaction by Inhibiting Donor Anti-Host Cytotoxicity. Transplantation, 2011, 92, 1085-1093.	1.0	15

#	Article	IF	CITATIONS
19	T follicular helper expansion and humoral-mediated rejection are independent of the HVEM/BTLA pathway. Cellular and Molecular Immunology, 2017, 14, 497-510.	10.5	15
20	Blockade of the PD-1/PD-1L pathway reverses the protective effect of anti-CD40L therapy in a rat to mouse concordant islet xenotransplantation model. Xenotransplantation, 2007, 14, 243-248.	2.8	14
21	<scp>ITIM</scp> â€dependent negative signaling pathways for the control of cellâ€mediated xenogeneic immune responses. Xenotransplantation, 2013, 20, 397-406.	2.8	14
22	Evaluation of survival of Actinobacillus pleuropneumoniae and Haemophilus parasuis in four liquid media and two swab specimen transport systems. American Journal of Veterinary Research, 2003, 64, 1176-1180.	0.6	12
23	Immunotherapeutic targeting of LIGHT/LT \hat{l}^2 R/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. MAbs, 2016, 8, 478-490.	5.2	11
24	Modulation of cytotoxic responses by targeting CD160 prolongs skin graft survival across major histocompatibility class I barrier. Translational Research, 2017, 181, 83-95.e3.	5.0	11
25	The thymus is required for the ability of FTY720 to prolong skin allograft survival across different histocompatibility MHC barriers. Transplant International, 2007, 20, 895-903.	1.6	9
26	FTY720 Inhibits TH1-Mediated Allogeneic Humoral Immune Response. Transplantation Proceedings, 2005, 37, 4124-4126.	0.6	8
27	The Role of TNFR2 and DR3 in the In Vivo Expansion of Tregs in T Cell Depleting Transplantation Regimens. International Journal of Molecular Sciences, 2020, 21, 3347.	4.1	8
28	Critical role of PD-L1 expression on non-tumor cells rather than on tumor cells for effective anti-PD-L1 immunotherapy in a transplantable mouse hematopoietic tumor model. Cancer Immunology, Immunotherapy, 2020, 69, 1001-1014.	4.2	7
29	Flt3L-mobilized dendritic cells bearing H2-Kbm1 apoptotic cells do not induce cross-tolerance to CD8+ T cells across a class I MHC mismatched barrier. Transplant International, 2011, 24, 501-513.	1.6	6
30	Therapeutic Blockade of LIGHT Interaction With Herpesvirus Entry Mediator and Lymphotoxin \hat{l}^2 Receptor Attenuates In Vivo Cytotoxic Allogeneic Responses. Transplantation, 2014, 98, 1165-1174.	1.0	6
31	The impact of CD160 deficiency on alloreactive CD8 T cell responses and allograft rejection. Translational Research, 2021, , .	5.0	5
32	Identification of sull allele of dihydropteroate synthase by representational difference analysis in Haemophilus parasuis serovar 2. Letters in Applied Microbiology, 2005, 40, 436-442.	2.2	4
33	Therapeutic implications of NK cell regulation of allogeneic CD8 T cell-mediated immune responses stimulated through the direct pathway of antigen presentation in transplantation. MAbs, 2018, 10, 1-15.	5.2	2
34	Differential Engraftment of Parental A20 PD-L1 WT and PD-L1 KO Leukemia Cells in Semiallogeneic Recipients in the Context of PD-L1/PD-1 Interaction and NK Cell-Mediated Hybrid Resistance. Frontiers in Immunology, 0, 13, .	4.8	1
35	Inmunorregulaci $ ilde{A}^3$ n: un nuevo paradigma terap $ ilde{A}$ ©utico. Inmunologia (Barcelona, Spain: 1987), 2010, 29, 135-140.	0.1	0
36	Inducción de tolerancia en el trasplante de órganos sólidos. GastroenterologÃa Y HepatologÃa, 2004, 27, 66-72.	0.5	0

3