Radda Rusinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8957039/publications.pdf

Version: 2024-02-01

623734 642732 42 570 14 23 citations g-index h-index papers 46 46 46 848 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism. Science Advances, 2022, 8, eabm4552.	10.3	5
2	Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Frontiers in Physiology, 2022, 13, 836789.	2.8	4
3	Capsaicin as an amphipathic modulator of Na _V 1.5 mechanosensitivity. Channels, 2022, 16, 9-26.	2.8	3
4	Mechanisms Underlying Drug-Mediated Regulation of Membrane Protein Function. Biophysical Journal, 2021, 120, 227a-228a.	0.5	0
5	Cannabidiol inhibits the skeletal muscle Nav1.4 by blocking its pore and by altering membrane elasticity. Journal of General Physiology, 2021, 153, .	1.9	38
6	674 CAPSAICIN'S EFFECTS ON HUMAN SODIUM CHANNEL NAV1.5 MECHANOSENSITIVITY. Gastroenterology, 2021, 160, S-132.	1.3	0
7	Mechanisms underlying drug-mediated regulation of membrane protein function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
8	Beta-Blockers Alter Lipid Bilayer Properties. Biophysical Journal, 2020, 118, 381a.	0.5	0
9	Synthesis and evaluation of resveratrol derivatives as fetal hemoglobin inducers. Bioorganic Chemistry, 2020, 100, 103948.	4.1	16
10	Drug Regulation of Ion Channel Function Involves Both Direct and Bilayer-Mediated Mechanisms. Biophysical Journal, 2019, 116, 220a.	0.5	0
11	Gramicidin Increases Lipid Flip-Flop in Symmetric and Asymmetric Lipid Vesicles. Biophysical Journal, 2019, 116, 860-873.	0.5	44
12	Synthetic Analogues of the Snail Toxin 6-Bromo-2-mercaptotryptamine Dimer (BrMT) Reveal That Lipid Bilayer Perturbation Does Not Underlie Its Modulation of Voltage-Gated Potassium Channels. Biochemistry, 2018, 57, 2733-2743.	2.5	18
13	Gramicidin Increases Lipid Flip-Flop in Symmetric and Asymmetric Lipid Vesicles. Biophysical Journal, 2018, 114, 198a-199a.	0.5	0
14	Stopped-Flow Fluorometric Ion Flux Assay for Ligand-Gated Ion Channel Studies. Methods in Molecular Biology, 2018, 1684, 223-235.	0.9	16
15	Dissecting Drug Physico-Chemical Profiles as They Relate to their Bilayer Modifying Potency. Biophysical Journal, 2018, 114, 266a-267a.	0.5	0
16	Timing and Reset Mechanism of GTP Hydrolysis-Driven Conformational Changes of Atlastin. Structure, 2017, 25, 997-1010.e4.	3.3	27
17	Regulation of KcsA by Bilayer-Modifying Molecules. Biophysical Journal, 2017, 112, 225a-226a.	0.5	O
18	Lipid Bilayer Perturbation by the Snail Toxin 6-Bromo-2-Mercaptotryptamine Dimer does not Account for its Modulation of Voltage-Gated Potassium Channels. Biophysical Journal, 2017, 112, 246a-247a.	0.5	0

#	Article	IF	Citations
19	Examining the Translocation of Amphiphiles across Lipid Bilayers using a Gramicidin Channel-Based Fluorescent Assay. Biophysical Journal, 2017, 112, 521a.	0.5	0
20	Vectorial Cholesterol Transport by STARD4 is Mediated by Specific PIP 2 Membrane Composition. Biophysical Journal, 2017, 112, 87a.	0.5	0
21	A General Mechanism for Drug Promiscuity: Studies with Amiodarone and Other Antiarrhythmics. Biophysical Journal, 2016, 110, 80a.	0.5	0
22	A General Mechanism for Off-Target Effects: Studies with Amiodarone and other Antiarrhythmics. Biophysical Journal, 2015, 108, 498a.	0.5	0
23	Calcium ions open a selectivity filter gate during activation of the MthK potassium channel. Nature Communications, 2015, 6, 8342.	12.8	35
24	A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics. Journal of General Physiology, 2015, 146, 463-475.	1.9	35
25	A KcsA/MloK1 Chimeric Ion Channel Has Lipid-dependent Ligand-binding Energetics. Journal of Biological Chemistry, 2014, 289, 9535-9546.	3.4	12
26	Regulation of Ion Channel Function by the Host Lipid Bilayer Examined by a Stopped-Flow Spectrofluorometric Assay. Biophysical Journal, 2014, 106, 1070-1078.	0.5	33
27	Calcium-Dependent Gating in MthK K+ Channels Occurs at the Selectivity Filter. Biophysical Journal, 2014, 106, 642a.	0.5	0
28	Regulation of Ion Channel Function by the Host Lipid Bilayer Examined by a Stopped-Flow Spectrofluorimetric Assay. Biophysical Journal, 2014, 106, 298a.	0.5	0
29	A New Assay for Ion Channel Function using Stopped Flow Spectrofluorometry. Biophysical Journal, 2013, 104, 373a.	0.5	0
30	Interactions of drugs and amphiphiles with membranes: modulation of lipid bilayer elastic properties by changes in acyl chain unsaturation and protonation. Faraday Discussions, 2013, 161, 461-480.	3.2	36
31	Phosphoinositides alter lipid bilayer properties. Journal of General Physiology, 2013, 141, 673-690.	1.9	23
32	Phosphoinositides Alter Lipid Bilayer Properties. Biophysical Journal, 2012, 102, 84a.	0.5	0
33	Phosphoinositides Alter Lipid Bilayer Properties. Biophysical Journal, 2011, 100, 499a-500a.	0.5	0
34	Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. Pflugers Archiv European Journal of Physiology, 2011, 461, 387-397.	2.8	71
35	Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: implications for drug discovery. Journal of General Physiology, 2011, 138, 249-270.	1.9	48
36	Thiazolidinediones Alter Lipid Bilayer Properties and Native Voltage-Gated Sodium Channel Function. Biophysical Journal, 2010, 98, 480a.	0.5	0

3

RADDA RUSINOVA

#	Article	lF	CITATIONS
37	Specificity of Gî²Î³ Signaling Depends on Gî± Subunit Coupling with G-Protein-Sensitive K ⁺ Channels. Pharmacology, 2009, 84, 82-90.	2.2	6
38	Mass spectrometric analysis reveals a functionally important PKA phosphorylation site in a Kir3 channel subunit. Pflugers Archiv European Journal of Physiology, 2009, 458, 303-314.	2.8	13
39	The Insulin-sensitizers Troglitazone And Rosiglitazone Alter Lipid Bilayer Properties. Biophysical Journal, 2009, 96, 158a.	0.5	O
40	Hl-1 Cardiomyocytes As A Tool For The Study Of Regulation Of Kir3.1/Kir3.4 Channel Activity. Biophysical Journal, 2009, 96, 465a.	0.5	1
41	A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2. Nature Chemical Biology, 2008, 4, 624-631.	8.0	48
42	Specificity of $G\hat{I}^2\hat{I}^3$ Signaling to Kir3 Channels Depends on the Helical Domain of Pertussis Toxin-sensitive $G\hat{I}^2$ Subunits. Journal of Biological Chemistry, 2007, 282, 34019-34030.	3 . 4	24