Francis P Lach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8956613/publications.pdf Version: 2024-02-01

FRANCIS PLACH

#	Article	IF	CITATIONS
1	Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nature Genetics, 2007, 39, 162-164.	21.4	556
2	A Genetic Screen Identifies FAN1, a Fanconi Anemia-Associated Nuclease Necessary for DNA Interstrand Crosslink Repair. Molecular Cell, 2010, 39, 36-47.	9.7	306
3	Mutations of the SLX4 gene in Fanconi anemia. Nature Genetics, 2011, 43, 142-146.	21.4	291
4	FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nature Structural and Molecular Biology, 2007, 14, 564-567.	8.2	250
5	A Dominant Mutation in Human RAD51 Reveals Its Function in DNA Interstrand Crosslink Repair Independent of Homologous Recombination. Molecular Cell, 2015, 59, 478-490.	9.7	227
6	FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nature Genetics, 2012, 44, 910-915.	21.4	205
7	Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood, 2013, 121, 54-63.	1.4	146
8	Human GEN1 and the SLX4-Associated Nucleases MUS81 and SLX1 Are Essential for the Resolution of Replication-Induced Holliday Junctions. Cell Reports, 2013, 5, 207-215.	6.4	121
9	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	8.2	115
10	Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations. Blood, 2011, 117, 3759-3769.	1.4	108
11	Deficiency of UBE2T, the E2ÂUbiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia. Cell Reports, 2015, 12, 35-41.	6.4	107
12	Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood, 2013, 121, e138-e148.	1.4	74
13	Natural history and management of <scp>F</scp> anconi anemia patients with head and neck cancer: A 10â€year followâ€up. Laryngoscope, 2016, 126, 870-879.	2.0	71
14	Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links. Genes and Development, 2020, 34, 832-846.	5.9	48
15	Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity. Molecular Cell, 2018, 69, 24-35.e5.	9.7	40
16	Assessment of SLX4 Mutations in Hereditary Breast Cancers. PLoS ONE, 2013, 8, e66961.	2.5	37
17	Comprehensive Analysis of Pathogenic Deletion Variants in Fanconi Anemia Genes. Human Mutation, 2014, 35, n/a-n/a.	2.5	35
18	A comprehensive approach to identification of pathogenic FANCA variants in Fanconi anemia patients and their families. Human Mutation, 2018, 39, 237-254.	2.5	35

FRANCIS P LACH

#	Article	IF	CITATIONS
19	Somatic mosaicism of an intragenic <i><scp>FANCB</scp></i> duplication in both fibroblast and peripheral blood cells observed in a Fanconi anemia patient leads to milder phenotype. Molecular Genetics & amp; Genomic Medicine, 2018, 6, 77-91.	1.2	28
20	Identification and characterization of mutations in FANCL gene: A second case of Fanconi anemia belonging to FA-L complementation group. Human Mutation, 2009, 30, E761-E770.	2.5	23
21	Association of clinical severity with FANCB variant type in Fanconi anemia. Blood, 2020, 135, 1588-1602.	1.4	18
22	Transcriptional Silencing of <i>ALDH2</i> Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. Cancer Discovery, 2021, 11, 2300-2315.	9.4	13
23	Esophageal cancer as initial presentation of Fanconi anemia in patients with a hypomorphic <i>FANCA</i> variant. Journal of Physical Education and Sports Management, 2020, 6, a005595.	1.2	10
24	Paternal or Maternal Uniparental Disomy of Chromosome 16 Resulting in Homozygosity of a Mutant Allele Causes Fanconi Anemia. Human Mutation, 2016, 37, 465-468.	2.5	7
25	Suppression of non-homologous end joining does not rescue DNA repair defects in Fanconi anemia patient cells. Cell Cycle, 2020, 19, 2553-2561.	2.6	6
26	Comparison of the clinical phenotype and haematological course of siblings with Fanconi anaemia. British Journal of Haematology, 2021, 193, 971-975.	2.5	6
27	A homozygous missense variant in UBE2T is associated with a mild Fanconi anemia phenotype. Haematologica, 2021, 106, 1188-1192.	3.5	3
28	Clinical Severity Correlates with in Vitro Residual Function of FANCB Missense Variants. Blood, 2018, 132, 2588-2588.	1.4	0
29	A Novel Source of Endogenous DNA Damage That Requires Repair By the Fanconi Anemia Pathway. Blood 2019 134 106-106	1.4	0