
Oleksandr Gakh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8956319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial processing peptidases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 63-77.	4.1	353
2	Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Human Molecular Genetics, 2006, 15, 467-479.	2.9	179
3	Yeast Frataxin Sequentially Chaperones and Stores Iron by Coupling Protein Assembly with Iron Oxidation. Journal of Biological Chemistry, 2003, 278, 31340-31351.	3.4	145
4	Physical Evidence that Yeast Frataxin Is an Iron Storage Proteinâ€. Biochemistry, 2002, 41, 6798-6804.	2.5	120
5	The Ferroxidase Activity of Yeast Frataxin. Journal of Biological Chemistry, 2002, 277, 38589-38595.	3.4	80
6	The Structures of Frataxin Oligomers Reveal the Mechanism for the Delivery and Detoxification of Iron. Structure, 2006, 14, 1535-1546.	3.3	78
7	Structure of Frataxin Iron Cores: An X-ray Absorption Spectroscopic Studyâ€. Biochemistry, 2003, 42, 5971-5976.	2.5	68
8	Lateral-flow immunoassay for the frataxin protein in Friedreich's ataxia patients and carriers. Molecular Genetics and Metabolism, 2008, 94, 491-497.	1.1	67
9	Normal and Friedreich Ataxia Cells Express Different Isoforms of Frataxin with Complementary Roles in Iron-Sulfur Cluster Assembly. Journal of Biological Chemistry, 2010, 285, 38486-38501.	3.4	67
10	<i>PMPCA</i> mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain, 2015, 138, 1505-1517.	7.6	58
11	Oligomeric Yeast Frataxin Drives Assembly of Core Machinery for Mitochondrial Iron-Sulfur Cluster Synthesis. Journal of Biological Chemistry, 2009, 284, 21971-21980.	3.4	53
12	Structural Basis of the Iron Storage Function of Frataxin from Single-Particle Reconstruction of the Iron-Loaded Oligomer. Biochemistry, 2008, 47, 4948-4954.	2.5	40
13	Assembly of the Iron-binding Protein Frataxin in Saccharomyces cerevisiae Responds to Dynamic Changes in Mitochondrial Iron Influx and Stress Level. Journal of Biological Chemistry, 2008, 283, 31500-31510.	3.4	33
14	Missense Mutations Linked to Friedreich Ataxia Have Different but Synergistic Effects on Mitochondrial Frataxin Isoforms. Journal of Biological Chemistry, 2013, 288, 4116-4127.	3.4	25
15	Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. Journal of Biological Chemistry, 2016, 291, 21296-21321.	3.4	24
16	The Structure of the Complex between Yeast Frataxin and Ferrochelatase. Journal of Biological Chemistry, 2016, 291, 11887-11898.	3.4	22
17	Oligomerization Propensity and Flexibility of Yeast Frataxin Studied by X-ray Crystallography and Small-Angle X-ray Scattering. Journal of Molecular Biology, 2011, 414, 783-797.	4.2	21
18	The Molecular Basis of Iron-induced Oligomerization of Frataxin and the Role of the Ferroxidation Reaction in Oligomerization. Journal of Biological Chemistry, 2013, 288, 8156-8167.	3.4	21

#	Article	IF	CITATIONS
19	Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery. Journal of Biological Chemistry, 2016, 291, 10378-10398.	3.4	17
20	Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe–S cluster assembly centers. Metallomics, 2017, 9, 773-801.	2.4	6
21	SAXS and stability studies of iron-induced oligomers of bacterial frataxin CyaY. PLoS ONE, 2017, 12, e0184961.	2.5	1