Chengzhong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8955812/publications.pdf

Version: 2024-02-01

374 papers 28,697 citations

88 h-index 154 g-index

386 all docs 386 docs citations

times ranked

386

26164 citing authors

#	Article	IF	CITATIONS
1	ZnO nanoparticles embedded in hollow carbon fiber membrane for electrochemical H2O2 production by two-electron water oxidation reaction. Environmental Research, 2022, 206, 112290.	7. 5	26
2	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie, 2022, 134 , .	2.0	30
3	A Pacmanâ€Like Titaniumâ€Doped Cobalt Sulfide Hollow Superstructure for Electrocatalytic Oxygen Evolution. Small, 2022, 18, e2103106.	10.0	28
4	Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. Biomaterials, 2022, 280, 121261.	11.4	29
5	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie - International Edition, 2022, 61, .	13.8	52
6	Quantum dots' size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination. Biosensors and Bioelectronics, 2022, 199, 113892.	10.1	12
7	Hierarchical Porous Nitrogenâ€Doped Sprayâ€Dried Graphene for High Performance Capacitive Deionization. Advanced Energy and Sustainability Research, 2022, 3, .	5. 8	7
8	Trimetallic Sulfide Hollow Superstructures with Engineered dâ€Band Center for Oxygen Reduction to Hydrogen Peroxide in Alkaline Solution. Advanced Science, 2022, 9, e2104768.	11.2	26
9	Cationic and Anionic Antimicrobial Agents Co-Templated Mesostructured Silica Nanocomposites with a Spiky Nanotopology and Enhanced Biofilm Inhibition Performance. Nano-Micro Letters, 2022, 14, 83.	27.0	8
10	Vertical Orientation Probability Matters for Enhancing Nanoparticleâ€Macrophage Interaction and Efficient Phagocytosis. Small Methods, 2022, 6, e2101601.	8.6	4
11	In-situ synthesis of Drug-Containing bactericidal rough silica nanoparticles for antibacterial coating. Chemical Engineering Journal, 2022, 440, 135837.	12.7	7
12	Semiconducting MOF@ZnS Heterostructures for Photocatalytic Hydrogen Peroxide Production: Heterojunction Coverage Matters. Advanced Functional Materials, 2022, 32, .	14.9	59
13	A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy. Biomaterials, 2022, 284, 121533.	11.4	19
14	Co-Delivery of Nano-Silver and Vancomycin via Silica Nanopollens for Enhanced Antibacterial Functions. Antibiotics, 2022, 11, 685.	3.7	6
15	Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect. ACS Nano, 2022, 16, 10943-10957.	14.6	33
16	Recent Advances in Silica-Nanomaterial-Assisted Lateral Flow Assay. Bioengineering, 2022, 9, 266.	3.5	2
17	Silicaâ€based Nanoparticles for Enzyme Immobilization and Delivery. Chemistry - an Asian Journal, 2022, 17, .	3.3	7
18	Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy. Nano Today, 2021, 36, 101035.	11.9	28

#	Article	IF	CITATIONS
19	Large scale synthesis of self-assembled shuttlecock-shaped silica nanoparticles with minimized drag as advanced catalytic nanomotors. Chemical Engineering Journal, 2021, 417, 127971.	12.7	9
20	Confined growth of ZIF-8 in dendritic mesoporous organosilica nanoparticles as bioregulators for enhanced mRNA delivery <i>in vivo</i> . National Science Review, 2021, 8, nwaa268.	9.5	21
21	Synthesis of dendritic mesoporous organosilica nanoparticles under a mild acidic condition with homogeneous wall structure and near-neutral surface. Chemical Communications, 2021, 57, 4416-4419.	4.1	4
22	Manganese-Doped Silica-Based Nanoparticles Promote the Efficacy of Antigen-Specific Immunotherapy. Journal of Immunology, 2021, 206, 987-998.	0.8	16
23	Synergistic Effect of Two Nanotechnologies Enhances the Protective Capacity of the Theileria parva Sporozoite p67C Antigen in Cattle. Journal of Immunology, 2021, 206, 686-699.	0.8	10
24	Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery. Journal of Materials Science, 2021, 56, 5830-5844.	3.7	12
25	Benzene-Bridged Organosilica Modified Mesoporous Silica Nanoparticles via an Acid-Catalysis Approach. Langmuir, 2021, 37, 2780-2786.	3.5	6
26	Thermal Reductive Perforation of Graphene Cathode for Highâ€Performance Aluminumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2010569.	14.9	41
27	The Role of Dendritic Mesoporous Silica Nanoparticles' Size for Quantum Dots Enrichment and Lateral Flow Immunoassay Performance. Small Methods, 2021, 5, e2000924.	8.6	30
28	Large-scale synthesis of fractal silica nanoparticles: understanding the impact of solvents. Microporous and Mesoporous Materials, 2021, 316, 110976.	4.4	3
29	MOF-on-MOF hybrids: Synthesis and applications. Coordination Chemistry Reviews, 2021, 432, 213743.	18.8	231
30	High Yield Electrosynthesis of Hydrogen Peroxide from Water Using Electrospun CaSnO ₃ @Carbon Fiber Membrane Catalysts with Abundant Oxygen Vacancy. Advanced Functional Materials, 2021, 31, 2100099.	14.9	52
31	A novel approach to designing air filters: Ubiquitous material-based Janus air filter modules with hydrophilic and hydrophobic parts. Chemical Engineering Journal, 2021, 410, 128302.	12.7	19
32	Designer Anticancer Nanoprodrugs with Selfâ€Toxification Activity Realized by Acidâ€triggered Biodegradation and Inâ€Situ Fragment Complexation. Angewandte Chemie, 2021, 133, 11605-11614.	2.0	3
33	Designer Anticancer Nanoprodrugs with Selfâ€Toxification Activity Realized by Acidâ€triggered Biodegradation and Inâ€Situ Fragment Complexation. Angewandte Chemie - International Edition, 2021, 60, 11504-11513.	13.8	8
34	Nanochemistry Modulates Intracellular Decomposition Routes of Sâ€Nitrosothiol Modified Silicaâ€Based Nanoparticles. Small, 2021, 17, e2007671.	10.0	6
35	Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production. Nano Research, 2021, 14, 3267-3273.	10.4	35
36	Rational Design of Dendritic Mesoporous Silica Nanoparticles' Surface Chemistry for Quantum Dot Enrichment and an Ultrasensitive Lateral Flow Immunoassay. ACS Applied Materials & Diterfaces, 2021, 13, 21507-21515.	8.0	34

#	Article	IF	Citations
37	Superstructured Macroporous Carbon Rods Composed of Defective Graphitic Nanosheets for Efficient Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2100120.	11,2	31
38	Ferroptosis-Strengthened Metabolic and Inflammatory Regulation of Tumor-Associated Macrophages Provokes Potent Tumoricidal Activities. Nano Letters, 2021, 21, 6471-6479.	9.1	65
39	Biomimetic inorganic-organic hybrid nanoparticles from magnesium-substituted amorphous calcium phosphate clusters and polyacrylic acid molecules. Bioactive Materials, 2021, 6, 2303-2314.	15.6	14
40	Metalâ€Organic Frameworks Derived Titanium Oxides via Soft Interface Adaptive Transformation. Advanced Functional Materials, 2021, 31, 2107260.	14.9	5
41	MnO ₂ Nanoflowers Induce Immunogenic Cell Death under Nutrient Deprivation: Enabling an Orchestrated Cancer Starvationâ€Immunotherapy. Advanced Science, 2021, 8, 2002667.	11.2	34
42	Clinical translation of silica nanoparticles. Nature Reviews Materials, 2021, 6, 1072-1074.	48.7	137
43	Submicron-Sized Vermiculite Assisted Oregano Oil for Controlled Release and Long-Term Bacterial Inhibition. Antibiotics, 2021, 10, 1324.	3.7	1
44	Asymmetric Silica Nanoparticles with Tailored Spiky Coverage Derived from Silica–Polymer Cooperative Assembly for Enhanced Hemocompatibility and Gene Delivery. ACS Applied Materials & Long; Interfaces, 2021, 13, 50695-50704.	8.0	14
45	A General Approach to Direct Growth of Oriented Metal–Organic Framework Nanosheets on Reduced Graphene Oxides. Advanced Science, 2020, 7, 1901480.	11.2	25
46	Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hardâ€toâ€Transfect Cells. Angewandte Chemie, 2020, 132, 2717-2721.	2.0	13
47	Fractal-in-a-Sphere: Confined Self-Assembly of Fractal Silica Nanoparticles. Chemistry of Materials, 2020, 32, 341-347.	6.7	38
48	Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hardâ€toâ€Transfect Cells. Angewandte Chemie - International Edition, 2020, 59, 2695-2699.	13.8	49
49	Amorphous Metal–Organic Frameworkâ€Dominated Nanocomposites with Both Compositional and Structural Heterogeneity for Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 3630-3637.	13.8	143
50	Antibioticâ€Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives. Advanced Materials, 2020, 32, e1904106.	21.0	368
51	Amorphous Metal–Organic Frameworkâ€Dominated Nanocomposites with Both Compositional and Structural Heterogeneity for Oxygen Evolution. Angewandte Chemie, 2020, 132, 3659-3666.	2.0	21
52	DNA Vaccine Mediated by Rambutanâ€Like Mesoporous Silica Nanoparticles. Advanced Therapeutics, 2020, 3, 1900154.	3.2	17
53	Improving the utilization rate of foliar nitrogen fertilizers by surface roughness engineering of silica spheres. Environmental Science: Nano, 2020, 7, 3526-3535.	4.3	14
54	One-pot and surfactant-free synthesis of N-doped mesoporous carbon spheres for the sensitive and selective screening of small biomolecules. Journal of Electroanalytical Chemistry, 2020, 873, 114462.	3.8	3

#	Article	IF	CITATIONS
55	Coupling Effect of Au Nanoparticles with the Oxygen Vacancies of TiO _{2–<i>x</i>} for Enhanced Charge Transfer. Journal of Physical Chemistry C, 2020, 124, 23823-23831.	3.1	25
56	Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nature Communications, 2020, 11, 4971.	12.8	138
57	Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators. Accounts of Chemical Research, 2020, 53, 1545-1556.	15.6	128
58	Ni/carbon aerogels derived from water induced self-assembly of Ni-MOF for adsorption and catalytic conversion of oily wastewater. Chemical Engineering Journal, 2020, 402, 126205.	12.7	51
59	Nitrogen-Doped Mesoporous Carbon Microspheres by Spray Drying-Vapor Deposition for High-Performance Supercapacitor. Frontiers in Chemistry, 2020, 8, 592904.	3.6	6
60	Eliciting Immunogenic Cell Death via a Unitized Nanoinducer. Nano Letters, 2020, 20, 6246-6254.	9.1	80
61	Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angewandte Chemie - International Edition, 2020, 59, 22054-22062.	13.8	76
62	The impact of ethanol and chlorobenzene in the structure regulation of dendritic mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2020, 307, 110504.	4.4	11
63	Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angewandte Chemie, 2020, 132, 22238-22246.	2.0	16
64	Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angewandte Chemie - International Edition, 2020, 59, 19610-19617.	13.8	22
65	Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angewandte Chemie, 2020, 132, 19778-19785.	2.0	3
66	Post translational modification-assisted cancer immunotherapy for effective breast cancer treatment. Chemical Science, 2020, 11, 10421-10430.	7.4	14
67	Materials Science in Australia. Advanced Materials, 2020, 32, e2001629.	21.0	4
68	Antibioticâ€Free Strategies: Antibioticâ€Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070138.	21.0	14
69	Shaping Nanoparticles for Interface Catalysis: Concave Hollow Spheres via Deflation–Inflation Asymmetric Growth. Advanced Science, 2020, 7, 2000393.	11.2	30
70	Emerging Concepts of Nanobiotechnology in mRNA Delivery. Angewandte Chemie - International Edition, 2020, 59, 23374-23385.	13.8	34
71	Pristine large pore benzene-bridged mesoporous organosilica nanoparticles as an adjuvant and co-delivery platform for eliciting potent antitumor immunity. Materials Today Advances, 2020, 6, 100069.	5.2	15
72	<scp>Nanobiopesticides</scp> : Silica nanoparticles with spiky surfaces enable dual adhesion and enhanced performance. EcoMat, 2020, 2, e12028.	11.9	16

#	Article	IF	Citations
73	Synthesis of cube–rod–tube triblock asymmetric nanostructures for enhanced heterogeneous catalysis. Chemical Communications, 2020, 56, 7973-7976.	4.1	6
74	MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts. Journal of Hazardous Materials, 2020, 394, 122567.	12.4	97
75	An organic-based aqueous hybrid flow battery with high power and long cycle life: a tetrapyridophenazine/ferrocyanide system. Journal of Materials Chemistry A, 2020, 8, 6874-6881.	10.3	12
76	Site-specific growth of MOF-on-MOF heterostructures with controllable nano-architectures: beyond the combination of MOF analogues. Chemical Science, 2020, 11, 3680-3686.	7.4	89
77	Moderne Konzepte der Nanobiotechnologie für mRNAâ€Abgabesysteme. Angewandte Chemie, 2020, 132, 23578-23590.	2.0	4
78	Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimaging-Guided Drug Delivery. CheM, 2020, 6, 1097-1112.	11.7	55
79	Rücktitelbild: Amorphous Metal–Organic Frameworkâ€Dominated Nanocomposites with Both Compositional and Structural Heterogeneity for Oxygen Evolution (Angew. Chem. 9/2020). Angewandte Chemie, 2020, 132, 3776-3776.	2.0	0
80	Lyophilization enabled disentanglement of polyethylenimine on rambutan-like silica nanoparticles for enhanced plasmid DNA delivery. Journal of Materials Chemistry B, 2020, 8, 4593-4600.	5.8	5
81	Modulating the Void Space of Nitrogenâ€Doped Hollow Mesoporous Carbon Spheres for Lithiumâ€Sulfur Batteries. ChemNanoMat, 2020, 6, 925-929.	2.8	7
82	3D-Nanosponge enabled segregation: a versatile approach for highly dispersed and high content functionalization of metal oxide species. Materials Chemistry Frontiers, 2020, 4, 1739-1746.	5.9	3
83	Characterization of the Biodistribution of a Silica Vesicle Nanovaccine Carrying a Rhipicephalus (Boophilus) microplus Protective Antigen With in vivo Live Animal Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 606652.	4.1	6
84	Ultralarge interlayer distance and C,N-codoping enable superior sodium storage capabilities of MoS2 nanoonions. Chemical Engineering Journal, 2019, 378, 122249.	12.7	39
85	Heterogeneous Contraction-Mediated Asymmetric Carbon Colloids. , 2019, 1, 290-296.		20
86	Engineering mesoporous silica microspheres as hyper-activation supports for continuous enzymatic biodiesel production. Materials Chemistry Frontiers, 2019, 3, 1816-1822.	5.9	6
87	Nanotherapy: Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2 (Adv. Mater. 46/2019). Advanced Materials, 2019, 31, 1970331.	21.0	4
88	Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum–Selenium Batteries. Small, 2019, 15, e1904310.	10.0	33
89	Responsively Aggregatable Sub-6 nm Nanochelators Induce Simultaneous Antiangiogenesis and Vascular Obstruction for Enhanced Tumor Vasculature Targeted Therapy. Nano Letters, 2019, 19, 7750-7759.	9.1	29
90	Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2. Advanced Materials, 2019, 31, e1904535.	21.0	51

#	Article	IF	Citations
91	Hollow Nanostructures: Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures (Adv. Mater. 38/2019). Advanced Materials, 2019, 31, 1970272.	21.0	1
92	A three-dimensional porous Co@C/carbon foam hybrid monolith for exceptional oil–water separation. Nanoscale, 2019, 11, 12161-12168.	5.6	33
93	Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Frontiers in Chemistry, 2019, 7, 290.	3.6	159
94	Fast Capture of Fluoride by Anion-Exchange Zirconium–Graphene Hybrid Adsorbent. Langmuir, 2019, 35, 6861-6869.	3.5	24
95	Highly Thiolated Dendritic Mesoporous Silica Nanoparticles with High-Content Gold as Nanozymes: The Nano-Gold Size Matters. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13264-13272.	8.0	36
96	Synthesis of biphenyl bridged dendritic mesoporous organosilica with extremely high adsorption of pyrene. Journal of Materials Chemistry A, 2019, 7, 12029-12037.	10.3	25
97	Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway. Journal of the American Chemical Society, 2019, 141, 6122-6126.	13.7	126
98	Core–Shell Prussian Blue Analogs with Compositional Heterogeneity and Open Cages for Oxygen Evolution Reaction. Advanced Science, 2019, 6, 1801901.	11.2	86
99	Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chemical Science, 2019, 10, 10388-10394.	7.4	26
100	Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. Advanced Materials, 2019, 31, e1801564.	21.0	43
101	Dendritic mesoporous carbon nanoparticles for ultrahigh and fast adsorption of anthracene. Chemosphere, 2019, 215, 716-724.	8.2	19
102	Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance. Scientific Reports, 2018, 8, 3078.	3.3	28
103	Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production. Materials Chemistry Frontiers, 2018, 2, 1334-1342.	5.9	31
104	A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length. Langmuir, 2018, 34, 5011-5019.	3.5	6
105	Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chemical Communications, 2018, 54, 2020-2023.	4.1	41
106	Rýcktitelbild: Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 862-862.	2.0	0
107	Mesoporous carbon hollow spheres: carbonisation-temperature-dependent delivery of therapeutic proteins. Journal of Materials Chemistry B, 2018, 6, 763-768.	5.8	6
108	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie, 2018, 130, 662-666.	2.0	1

#	Article	IF	Citations
109	Hollow Mesoporous Carbon Nanocubes: Rigidâ€Interfaceâ€Induced Outward Contraction of Metalâ€Organic Frameworks. Advanced Functional Materials, 2018, 28, 1705253.	14.9	100
110	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 654-658.	13.8	16
111	Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2-biased immune response. Nano Research, 2018, 11, 370-382.	10.4	14
112	Frontispiece: Nano-resoles-Enabled Elegant Nanostructured Materials. Chemistry - A European Journal, 2018, 24, .	3.3	0
113	Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 2018, 175, 82-92.	11.4	135
114	Rechargeable aluminum–selenium batteries with high capacity. Chemical Science, 2018, 9, 5178-5182.	7.4	87
115	Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance. Journal of Materials Chemistry B, 2018, 6, 4089-4095.	5.8	52
116	Dendritic Mesoporous Silica Nanoparticles with Abundant Ti ⁴⁺ for Phosphopeptide Enrichment from Cancer Cells with 96% Specificity. Analytical Chemistry, 2018, 90, 7617-7625.	6.5	65
117	Stepwise Degradable Nanocarriers Enabled Cascade Delivery for Synergistic Cancer Therapy. Advanced Functional Materials, 2018, 28, 1800706.	14.9	96
118	Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance. Journal of Colloid and Interface Science, 2018, 529, 432-443.	9.4	10
119	Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization. Journal of Materials Chemistry A, 2018, 6, 14272-14280.	10.3	77
120	Hybrid Nanoreactors: Enabling an Offâ€theâ€Shelf Strategy for Concurrently Enhanced Chemoâ€immunotherapy. Angewandte Chemie - International Edition, 2018, 57, 11764-11769.	13.8	108
121	Hybrid Nanoreactors: Enabling an Offâ€theâ€Shelf Strategy for Concurrently Enhanced Chemoâ€immunotherapy. Angewandte Chemie, 2018, 130, 11938-11943.	2.0	27
122	Superhydrophobic dendritic mesoporous organosilica nano-particles with ultrahigh-content of gradient organic moieties. Journal of Materials Chemistry A, 2018, 6, 17579-17586.	10.3	16
123	Kinetically Controlled Dendritic Mesoporous Silica Nanoparticles: From Dahlia- to Pomegranate-like Structures by Micelle Filling. Chemistry of Materials, 2018, 30, 5770-5776.	6.7	45
124	Nanoâ€resolesâ€Enabled Elegant Nanostructured Materials. Chemistry - A European Journal, 2018, 24, 14598-14607.	3.3	8
125	Tailored Yolk–Shell Sn@C Nanoboxes for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2017, 27, 1606023.	14.9	173
126	Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. Journal of the American Chemical Society, 2017, 139, 4954-4961.	13.7	135

#	Article	IF	Citations
127	Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance. Environmental Science & Environmental	10.0	81
128	Core–Shellâ€structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery. Chemistry - an Asian Journal, 2017, 12, 1465-1469.	3.3	23
129	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie, 2017, 129, 8566-8570.	2.0	16
130	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie - International Edition, 2017, 56, 8446-8450.	13.8	128
131	Asymmetric Silica Nanoparticles with Tunable Head–Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. Journal of the American Chemical Society, 2017, 139, 6321-6328.	13.7	105
132	Flower-like C@SnO X @C hollow nanostructures with enhanced electrochemical properties for lithium storage. Nano Research, 2017, 10, 2966-2976.	10.4	37
133	Understanding the Effect of Surface Chemistry of Mesoporous Silica Nanorods on Their Vaccine Adjuvant Potency. Advanced Healthcare Materials, 2017, 6, 1700466.	7.6	36
134	Silica-based nanoparticles for therapeutic protein delivery. Journal of Materials Chemistry B, 2017, 5, 3241-3252.	5.8	65
135	A partially purified outer membrane protein VirB9-1 for low-cost nanovaccines against Anaplasma marginale. Vaccine, 2017, 35, 77-83.	3.8	3
136	Enzyme- and metal-free electrochemical sensor for highly sensitive superoxide anion detection based on nitrogen doped hollow mesoporous carbon spheres. Electrochimica Acta, 2017, 227, 69-76.	5.2	52
137	Single-Layered Mesoporous Carbon Sandwiched Graphene Nanosheets for High Performance Ionic Liquid Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 23947-23954.	3.1	12
138	Glucose-Responsive Nanosystem Mimicking the Physiological Insulin Secretion via an Enzyme–Polymer Layer-by-Layer Coating Strategy. Chemistry of Materials, 2017, 29, 7725-7732.	6.7	46
139	Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. Journal of Materials Chemistry A, 2017, 5, 19416-19421.	10.3	68
140	Dendritic mesoporous silica–titania nanospheres with enhanced photocatalytic activities. New Journal of Chemistry, 2017, 41, 8754-8760.	2.8	15
141	Plasmid DNA Delivery: Nanotopography Matters. Journal of the American Chemical Society, 2017, 139, 18247-18254.	13.7	109
142	Mg(OH) < sub > 2 < /sub > â € "MgO@reduced graphene oxide nanocomposites: the roles of composition and nanostructure in arsenite sorption. Journal of Materials Chemistry A, 2017, 5, 24484-24492.	10.3	26
143	Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 2017, 10, 605-617.	10.4	63
144	Rattle-type magnetic mesoporous hollow carbon as a high-performance and reusable adsorbent for water treatment. Chemosphere, 2017, 166, 109-117.	8.2	24

#	Article	IF	Citations
145	Nanoparticle-Based Delivery of Anaplasma marginale Membrane Proteins; VirB9-1 and VirB10 Produced in the Pichia pastoris Expression System. Nanomaterials, 2016, 6, 201.	4.1	6
146	Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS ONE, 2016, 11, e0154295.	2.5	19
147	Facile Synthesis of Largeâ€Pore Bicontinuous Cubic Mesoporous Silica Nanoparticles for Intracellular Gene Delivery. ChemNanoMat, 2016, 2, 220-225.	2.8	24
148	Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Advanced Functional Materials, 2016, 26, 5408-5418.	14.9	46
149	Polypyrroleâ€Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithiumâ€Ion Batteries. Small, 2016, 12, 3732-3737.	10.0	102
150	Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement. Nanotechnology, 2016, 27, 505605.	2.6	40
151	Structure-Dependent and Glutathione-Responsive Biodegradable Dendritic Mesoporous Organosilica Nanoparticles for Safe Protein Delivery. Chemistry of Materials, 2016, 28, 9008-9016.	6.7	142
152	Binder-Free TiO2 Monolith-Packed Pipette Tips for the Enrichment of Phosphorylated Peptides. Australian Journal of Chemistry, 2016, 69, 1396.	0.9	5
153	In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica–polymer composites for ultra-high level in-cavity adsorption. Journal of Materials Chemistry A, 2016, 4, 9063-9071.	10.3	73
154	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	14.6	374
155	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	13.7	219
156	Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25306-25312.	8.0	69
157	Kinetically Controlled Assembly of Nitrogenâ€Doped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967.	3.3	21
158	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Research, 2016, 9, 3725-3734.	10.4	45
159	Hollow mesoporous carbon nanocarriers for vancomycin delivery: understanding the structure–release relationship for prolonged antibacterial performance. Journal of Materials Chemistry B, 2016, 4, 7014-7021.	5.8	30
160	A Vesicle Supraâ€Assembly Approach to Synthesize Amineâ€Functionalized Hollow Dendritic Mesoporous Silica Nanospheres for Protein Delivery. Small, 2016, 12, 5169-5177.	10.0	72
161	Hollow Nanospheres: Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5579-5579.	14.9	0
162	The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs. Journal of Biomedical Materials Research - Part A, 2016, 104, 3004-3014.	4.0	28

#	Article	IF	CITATIONS
163	Combination of Microporous Hollow Carbon Spheres and Nafion for the Individual Metal-free Stripping Detection of Pb ²⁺ and Cd ²⁺ . Analytical Sciences, 2016, 32, 943-949.	1.6	10
164	Rational Design of Multifunctional Dendritic Mesoporous Silica Nanoparticles to Load Curcumin and Enhance Efficacy for Breast Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26511-26523.	8.0	108
165	Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density. Scientific Reports, 2016, 6, 26890.	3.3	84
166	Ultrasensitive ELISA $<$ sup $>+<$ /sup $>$ enhanced by dendritic mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2016, 4, 4975-4979.	5.8	39
167	Anion Assisted Synthesis of Large Pore Hollow Dendritic Mesoporous Organosilica Nanoparticles: Understanding the Composition Gradient. Chemistry of Materials, 2016, 28, 704-707.	6.7	199
168	Synthesis of mesoporous materials as nano-carriers for an antimalarial drug. Journal of Materials Chemistry B, 2016, 4, 1040-1043.	5.8	13
169	From Helixes to Mesostructures: Evolution of Mesoporous Silica Shells on Single-Walled Carbon Nanotubes. Chemistry of Materials, 2016, 28, 936-942.	6.7	17
170	Understanding the contribution of surface roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein delivery. Journal of Materials Chemistry B, 2016, 4, 212-219.	5.8	75
171	Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 2016, 4, 2646-2653.	5 . 8	87
172	Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Research, 2016, 9, 291-305.	10.4	30
173	Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 317-332.	3.3	145
174	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	10.0	140
175	Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes. Nanoscale, 2015, 7, 11580-11590.	5. 6	33
176	Preparation of fluorescent mesoporous hollow silica–fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy. Nanoscale, 2015, 7, 11894-11898.	5.6	25
177	New Insight into Ordered Cage-Type Mesostructures and Their Pore Size Determination by Electron Tomography. Langmuir, 2015, 31, 2545-2553.	3.5	6
178	Biphasic Synthesis of Largeâ€Pore and Wellâ€Dispersed Benzene Bridged Mesoporous Organosilica Nanoparticles for Intracellular Protein Delivery. Small, 2015, 11, 2743-2749.	10.0	82
179	A systematic study on the synthesis of \hat{l} ±-Fe ₂ O ₃ multi-shelled hollow spheres. RSC Advances, 2015, 5, 10304-10309.	3. 6	41
180	Mesoporous materials modified by aptamers and hydrophobic groups assist ultra-sensitive insulin detection in serum. Chemical Communications, 2015, 51, 13642-13645.	4.1	11

#	Article	IF	Citations
181	Self-Organized Mesostructured Hollow Carbon Nanoparticles via a Surfactant-Free Sequential Heterogeneous Nucleation Pathway. Chemistry of Materials, 2015, 27, 6297-6304.	6.7	99
182	One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5, 9270.	3.3	52
183	Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. Journal of Materials Chemistry B, 2015, 3, 8477-8485.	5.8	36
184	Gamma tocotrienol targets tyrosine phosphatase SHP2 in mammospheres resulting in cell death through RAS/ERK pathway. BMC Cancer, 2015, 15, 609.	2.6	19
185	Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic–organic self-assembly and superior supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 24041-24048.	10.3	96
186	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	11.3	65
187	Synthesis of Magnesium Oxide Hierarchical Microspheres: A Dual-Functional Material for Water Remediation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21278-21286.	8.0	124
188	Silencing of E6/E7 Expression in Cervical Cancer Stem-Like Cells. Methods in Molecular Biology, 2015, 1249, 173-182.	0.9	1
189	Silica Vesicle Nanovaccine Formulations Stimulate Long-Term Immune Responses to the Bovine Viral Diarrhoea Virus E2 Protein. PLoS ONE, 2015, 10, e0143507.	2.5	16
190	Protein Therapy: Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins (Small 24/2014). Small, 2014, 10, 4986-4986.	10.0	28
191	Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2014, 434, 218-225.	9.4	62
192	Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins. Small, 2014, 10, 5068-5076.	10.0	45
193	Synthesis of hollow organosiliceous spheres for volatile organic compound removal. Journal of Materials Chemistry A, 2014, 2, 19298-19307.	10.3	46
194	Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 520-527.	5.0	86
195	Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. Journal of Materials Chemistry B, 2014, 2, 718-726.	5.8	97
196	Highâ€Content, Wellâ€Dispersed γâ€Fe ₂ O ₃ Nanoparticles Encapsulated in Macroporous Silica with Superior Arsenic Removal Performance. Advanced Functional Materials, 2014, 24, 1354-1363.	14.9	118
197	Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chemical Communications, 2014, 50, 5547-5550.	4.1	71
198	Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. Journal of Materials Chemistry A, 2014, 2, 4144-4149.	10.3	22

#	Article	IF	Citations
199	Nanoparticle vaccines. Vaccine, 2014, 32, 327-337.	3.8	737
200	Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability. Journal of Hazardous Materials, 2014, 268, 115-123.	12.4	54
201	Sensitive Detection of Human Insulin Using a Designed Combined Pore Approach. Small, 2014, 10, 2413-2418.	10.0	10
202	Floating tablets from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8298-8302.	5.8	37
203	Tailoring the Void Size of Iron Oxide@Carbon Yolk–Shell Structure for Optimized Lithium Storage. Advanced Functional Materials, 2014, 24, 4337-4342.	14.9	212
204	Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin. RSC Advances, 2014, 4, 709-712.	3.6	90
205	Synthesis of SBA-15 rods with small sizes for enhanced cellular uptake. Journal of Materials Chemistry B, 2014, 2, 4929-4934.	5.8	23
206	A combo-pore approach for the programmable extraction of peptides/proteins. Nanoscale, 2014, 6, 5121-5125.	5.6	31
207	Highly crystallized Fe2O3nanocrystals on graphene: a lithium ion battery anode material with enhanced cycling. RSC Advances, 2014, 4, 495-499.	3.6	37
208	An Approach to Prepare Polyethylenimine Functionalized Silica-Based Spheres with Small Size for siRNA Delivery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15626-15631.	8.0	17
209	Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity. Molecular Pharmaceutics, 2014, 11, 3642-3655.	4.6	84
210	Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein. Biomaterials, 2014, 35, 9972-9983.	11.4	37
211	Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency. Journal of Materials Chemistry B, 2014, 2, 7673-7678.	5.8	15
212	From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization–reorganization approach. Journal of Catalysis, 2014, 319, 200-210.	6.2	81
213	An Interface-Directed Coassembly Approach To Synthesize Uniform Large-Pore Mesoporous Silica Spheres. Journal of the American Chemical Society, 2014, 136, 1884-1892.	13.7	97
214	Facile synthesis of ultra-small hybrid silica spheres for enhanced penetration in 3D glioma spheroids. Chemical Communications, 2014, 50, 1527-1529.	4.1	15
215	Enlargement of uniform micropores in hierarchically ordered micro–mesoporous carbon for high level decontamination of bisphenol A. Journal of Materials Chemistry A, 2014, 2, 8534.	10.3	73
216	Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers. Nanotechnology, 2014, 25, 055701.	2.6	53

#	Article	IF	Citations
217	Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. Journal of Materials Chemistry B, 2014, 2, 253-256.	5.8	61
218	Synthesis of Silica Vesicles with Small Sizes and Reduced Aggregation for Photodynamic Therapy. Chemistry Letters, 2014, 43, 316-318.	1.3	2
219	Cheap and scalable synthesis of î±-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. Chemical Communications, 2013, 49, 8695.	4.1	192
220	Continuous flow tuning of ordered mesoporous silica under ambient conditions. RSC Advances, 2013, 3, 18767.	3.6	32
221	Confinement of Chemisorbed Phosphates in a Controlled Nanospace with Threeâ€Dimensional Mesostructures. Chemistry - A European Journal, 2013, 19, 5578-5585.	3.3	16
222	Preparation of sinapinaldehyde modified mesoporous silica materials and their application in selective extraction of trace Pb(II). International Journal of Environmental Analytical Chemistry, 2013, 93, 1274-1285.	3.3	10
223	Applications of nanomaterials in mass spectrometry analysis. Nanoscale, 2013, 5, 12033.	5.6	48
224	Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers. RSC Advances, 2013, 3, 14466.	3.6	23
225	Novel synthesis and characterization of bismuth nano/microcrystals with sodium hypophosphite as reductant. Advanced Powder Technology, 2013, 24, 79-85.	4.1	20
226	Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery. Advanced Materials, 2013, 25, 6233-6237.	21.0	174
227	Designed synthesis of LiMn ₂ O ₄ microspheres with adjustable hollow structures for lithium-ion battery applications. Journal of Materials Chemistry A, 2013, 1, 837-842.	10.3	56
228	Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale, 2013, 5, 178-183.	5.6	286
229	Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale, 2013, 5, 5167.	5.6	206
230	Low-cost and large-scale synthesis of functional porous materials for phosphate removal with high performance. Nanoscale, 2013, 5, 6173.	5.6	60
231	Stepwise Pore Size Reduction of Ordered Nanoporous Silica Materials at Angstrom Precision. Journal of the American Chemical Society, 2013, 135, 8444-8447.	13.7	38
232	Laser Engineered Graphene Paper for Mass Spectrometry Imaging. Scientific Reports, 2013, 3, 1415.	3.3	44
233	Nanoparticles: Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery (Adv. Mater. 43/2013). Advanced Materials, 2013, 25, 6232-6232.	21.0	1
234	Recent advances in the rational design of silica-based nanoparticles for gene therapy. Therapeutic Delivery, 2012, 3, 1217-1237.	2.2	36

#	Article	IF	Citations
235	Formation of graphitic tubules from ordered mesoporous carbon and their effect on supercapacitive energy storage. Journal of Materials Chemistry, 2012, 22, 21472.	6.7	32
236	Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal. Journal of Materials Chemistry, 2012, 22, 9983.	6.7	90
237	Self-assembly of monodispersed silica nano-spheres with a closed-pore mesostructure. Journal of Materials Chemistry, 2012, 22, 11523.	6.7	18
238	Synthesis of Nonspherical Mesoporous Silica Ellipsoids with Tunable Aspect Ratios for Magnetic Assisted Assembly and Gene Delivery. Chemistry of Materials, 2012, 24, 230-235.	6.7	50
239	A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 514, 76-80.	5.5	59
240	Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 105-111.	4.7	33
241	Highly Ordered Cubic Mesoporous Materials with the Same Symmetry but Tunable Pore Structures. Langmuir, 2012, 28, 16382-16392.	3.5	13
242	Poly- <scp> </scp> -lysine Functionalized Large Pore Cubic Mesostructured Silica Nanoparticles as Biocompatible Carriers for Gene Delivery. ACS Nano, 2012, 6, 2104-2117.	14.6	247
243	Enrichment and Detection of Peptides from Biological Systems Using Designed Periodic Mesoporous Organosilica Microspheres. Small, 2012, 8, 231-236.	10.0	36
244	Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 2012, 24, 4419-4423.	21.0	350
245	Synthesis of bismuth nanoparticles and self-assembled nanobelts by a simple aqueous route in basic solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 276-283.	4.7	42
246	Synthesis and hydrodesulfurization properties of NiW catalyst supported on high-aluminum-content, highly ordered, and hydrothermally stable Al-SBA-15. Journal of Catalysis, 2012, 286, 124-136.	6.2	103
247	A simple approach to prepare monodisperse mesoporous silica nanospheres with adjustable sizes. Journal of Colloid and Interface Science, 2012, 376, 67-75.	9.4	71
248	Influence of Novel Nano-Mesoporous Bioactive Glass on the Regulation of IGF-II Gene Expression in Osteoblasts. Cell Biochemistry and Biophysics, 2012, 62, 119-123.	1.8	8
249	Hierarchical Cu ₄ V _{2.15} O _{9.38} micro-/nanostructures: a lithium intercalating electrode material. Nanoscale, 2011, 3, 999-1003.	5.6	24
250	A systematic study of long-range ordered 3D-SBA-15 materials by electron tomography. New Journal of Chemistry, 2011, 35, 2456.	2.8	24
251	Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. Journal of Materials Chemistry, 2011, 21, 10641.	6.7	56
252	Synthesis of magnetic hollow periodic mesoporous organosilica with enhanced cellulose tissue penetration behaviour. Journal of Materials Chemistry, 2011, 21, 7565.	6.7	18

#	Article	IF	Citations
253	Extensive Inspection of an Unconventional Mesoporous Silica Material at All Length-Scales. Chemistry of Materials, 2011, 23, 229-238.	6.7	14
254	A designed nanoporous material for phosphate removal with high efficiency. Journal of Materials Chemistry, 2011, 21, 2489.	6.7	127
255	Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Therapy, 2011, 18, 897-905.	4.6	63
256	Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta, 2011, 85, 1174-1179.	5.5	85
257	Periodic Mesoporous Organosilicas with Controlled Pore Symmetries for Peptides Enrichment. Journal of Nanoscience and Nanotechnology, 2011, 11, 5215-5222.	0.9	10
258	One-step Synthesis of Hierarchically Porous Silicas with Multilamellar Vesicular Core and Ordered Mesostructured Shell. Chemistry Letters, 2011, 40, 642-643.	1.3	0
259	Synthesis of large-pore periodic mesoporous organosilica. Materials Letters, 2011, 65, 21-23.	2.6	27
260	Small Mesoporous Silica Nanoparticles as Carriers for Enhanced Photodynamic Therapy. Chemistry - an Asian Journal, 2011, 6, 2332-2338.	3.3	23
261	Controlled release of volatile (â^')-menthol in nanoporous silica materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 593-602.	1.6	18
262	Electrochemistry and biosensing activity of cytochrome c immobilized in macroporous materials. Mikrochimica Acta, 2011, 175, 87-95.	5.0	25
263	Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Microporous and Mesoporous Materials, 2011, 143, 157-165.	4.4	23
264	TiO2-functionalized mesoporous materials for sensitive analysis of multi-phosphopeptides. Science China Chemistry, 2011, 54, 1327-1333.	8.2	5
265	A Facile Oneâ€Step Solvothermal Synthesis of SnO ₂ /Graphene Nanocomposite and Its Application as an Anode Material for Lithiumâ€lon Batteries. ChemPhysChem, 2011, 12, 278-281.	2.1	111
266	A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 2011, 196, 5402-5407.	7.8	335
267	A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. Journal of Electroanalytical Chemistry, 2011, 650, 209-213.	3.8	217
268	A silanol protection mechanism: Understanding the decomposition behavior of surfactants in mesostructured solids. Journal of Materials Research, 2011, 26, 804-814.	2.6	11
269	A Bioinspired Route to Various Siliceous Vesicular Structures. Journal of Nanoscience and Nanotechnology, 2010, 10, 612-615.	0.9	6
270	Synthesis of highly ordered and hydrothermally stable mesoporous materials using sodium silicate as a precursor. Materials Letters, 2010, 64, 1543-1545.	2.6	12

#	Article	IF	CITATIONS
271	Graphene Nanosheets Modified Glassy Carbon Electrode as a Highly Sensitive and Selective Voltammetric Sensor for Rutin. Electroanalysis, 2010, 22, 2399-2406.	2.9	45
272	Evolution of Helical Mesostructures. Chemistry - A European Journal, 2010, 16, 1629-1637.	3.3	16
273	A Smart Glycolâ€Directed Nanodevice from Rationally Designed Macroporous Materials. Chemistry - A European Journal, 2010, 16, 822-828.	3.3	38
274	Synthesis and in vitro bioactivity of ordered mesostructured bioactive glasses with adjustable pore sizes. Microporous and Mesoporous Materials, 2010, 132, 282-289.	4.4	33
275	Ultrasmall, Wellâ€Dispersed, Hollow Siliceous Spheres with Enhanced Endocytosis Properties. Small, 2010, 6, 276-282.	10.0	93
276	Tuning cooperative vesicle templating and liquid crystal templating simply by varying silica source. Journal of Materials Research, 2010, 25, 648-657.	2.6	11
277	α-MoO ₃ Nanobelts: A High Performance Cathode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 21868-21872.	3.1	248
278	$Mo < sub > (i > x < /i > < /sub > W < sub > 1 a^2 < i > x < /i > < /sub > O < sub > 3 < /sub > A < 0.33 H < sub > 2 < /sub > O Solid Solutions with Tunable Band Gaps. Journal of Physical Chemistry C, 2010, 114, 20947-20954.$	3.1	64
279	Solving hierarchical helical mesostructures by electron tomography. Chemical Communications, 2010, 46, 1688.	4.1	8
280	Nanosheet-Based Bi ₂ Mo _{<i>x</i>} W _{1â°'<i>x</i>} O ₆ Solid Solutions with Adjustable Band Gaps and Enhanced Visible-Light-Driven Photocatalytic Activities. Journal of Physical Chemistry C, 2010, 114, 18812-18818.	3.1	83
281	Functionalized Periodic Mesoporous Organosilicas for Enhanced and Selective Peptide Enrichment. Langmuir, 2010, 26, 7444-7450.	3.5	35
282	Controllable Adsorption of Reduced Graphene Oxide onto Self-Assembled Alkanethiol Monolayers on Gold Electrodes: Tunable Electrode Dimension and Potential Electrochemical Applications. Journal of Physical Chemistry C, 2010, 114, 4389-4393.	3.1	55
283	Synthesis of urchin-like CdWO4 microspheres via a facile template free hydrothermal method. CrystEngComm, 2010, 12, 3019.	2.6	26
284	Lithiumâ€Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Advanced Functional Materials, 2009, 19, 265-271.	14.9	156
285	TiO ₂ â€Modified Macroporous Silica Foams for Advanced Enrichment of Multiâ€Phosphorylated Peptides. Chemistry - A European Journal, 2009, 15, 2504-2508.	3.3	61
286	Periodic Mesoporous Organosilicas with Helical and Concentric Circular Pore Architectures. Chemistry - A European Journal, 2009, 15, 11319-11325.	3.3	22
287	Electrochemical Properties of Ordered Mesoporous Carbon Film Adsorbed onto a Selfâ€Assembled Alkanethiol Monolayer on Gold Electrode. Electroanalysis, 2009, 21, 184-189.	2.9	24
288	Synthesis and characterization of TiO2-incorporated silica foams. Journal of Materials Science, 2009, 44, 6484-6489.	3.7	12

#	Article	IF	Citations
289	Electronâ€Tomography Determination of the Packing Structure of Macroporous Ordered Siliceous Foams Assembled From Vesicles. Small, 2009, 5, 377-382.	10.0	22
290	Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Microporous and Mesoporous Materials, 2009, 117, 213-219.	4.4	137
291	Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film. Journal of Electroanalytical Chemistry, 2009, 625, 82-87.	3.8	151
292	Cooperative self-assembly of silica-based mesostructures templated by cationic fluorocarbon/hydrocarbon mixed-surfactants. Microporous and Mesoporous Materials, 2009, 126, 253-261.	4.4	40
293	A Phospho-Directed Macroporous Aluminaâ^'Silica Nanoreactor with Multi-Functions. ACS Nano, 2009, 3, 3656-3662.	14.6	70
294	On the Equilibrium of Helical Nanostructures with Ordered Mesopores. Journal of Physical Chemistry B, 2009, 113, 16178-16183.	2.6	7
295	New Understanding and Simple Approach to Synthesize Highly Hydrothermally Stable and Ordered Mesoporous Materials. Chemistry of Materials, 2009, 21, 5413-5425.	6.7	69
296	Nanosheets-Based Rhombohedral In ₂ O ₃ 3D Hierarchical Microspheres: Synthesis, Growth Mechanism, and Optical Properties. Journal of Physical Chemistry C, 2009, 113, 10511-10516.	3.1	49
297	Macroporous Materials as Novel Catalysts for Efficient and Controllable Proteolysis. Analytical Chemistry, 2009, 81, 5749-5756.	6.5	57
298	Preparation of Siliceous Vesicles with Adjustable Sizes, Wall Thickness, and Shapes. Chemistry Letters, 2009, 38, 442-443.	1.3	10
299	Sol–gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds. Journal of Sol-Gel Science and Technology, 2008, 45, 115-119.	2.4	24
300	Solving Complex Concentric Circular Mesostructures by Using Electron Tomography. Angewandte Chemie - International Edition, 2008, 47, 6670-6673.	13.8	24
301	Mesoporous bioactive glasses for controlled drug release. Microporous and Mesoporous Materials, 2008, 109, 210-215.	4.4	113
302	Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous and Mesoporous Materials, 2008, 109, 248-257.	4.4	48
303	Green Synthesis of Hexagonal-Shaped WO $<$ sub $>3sub>\hat{A}\cdot0.33H<sub>2sub>O Nanodiscs Composed of Nanosheets. Crystal Growth and Design, 2008, 8, 3993-3998.$	3.0	94
304	Structure Transition from Hexagonal Mesostructured Rodlike Silica to Multilamellar Vesicles. Langmuir, 2008, 24, 5038-5043.	3.5	27
305	Organosilica Multilamellar Vesicles with Tunable Number of Layers and Sponge-Like Walls via One Surfactant Templating. Chemistry of Materials, 2008, 20, 6238-6243.	6.7	48
306	Synthesis of Enantiomorphic Excessive Helical Mesoporous Silicas Using Chiral Molecular Dopants. Chemistry Letters, 2008, 37, 1160-1161.	1.3	8

#	Article	IF	Citations
307	An Ordered Mesoporous Carbon with Short Pore Length and Its Electrochemical Performances in Supercapacitor Applications. Journal of the Electrochemical Society, 2007, 154, A731.	2.9	138
308	Carbon fiber-templated growth of hierarchical analcime hollow fibers. Studies in Surface Science and Catalysis, 2007, 165, 381-384.	1.5	1
309	One Template Synthesis of Raspberry-like Hierarchical Siliceous Hollow Spheres. Journal of the American Chemical Society, 2007, 129, 14576-14577.	13.7	89
310	Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. Chemistry of Materials, 2007, 19, 1870-1876.	6.7	80
311	Hard-Sphere Packing and Icosahedral Assembly in the Formation of Mesoporous Materials. Journal of the American Chemical Society, 2007, 129, 9044-9048.	13.7	73
312	Siliceous Nanopods from a Compromised Dualâ€Templating Approach. Angewandte Chemie - International Edition, 2007, 46, 8579-8582.	13.8	72
313	Siliceous Unilamellar Vesicles and Foams by Using Block-Copolymer Cooperative Vesicle Templating. Advanced Functional Materials, 2007, 17, 613-617.	14.9	91
314	Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Materials Chemistry and Physics, 2007, 103, 489-493.	4.0	53
315	Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. Journal of Materials Chemistry, 2006, 16, 1511.	6.7	130
316	Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness. Journal of the American Chemical Society, 2006, 128, 6320-6321.	13.7	262
317	Supra-Assembly of Siliceous Vesicles. Journal of the American Chemical Society, 2006, 128, 15992-15993.	13.7	68
318	On the Origin of Helical Mesostructures. Journal of the American Chemical Society, 2006, 128, 10460-10466.	13.7	194
319	High-Temperature and Long-Term Stable Solid-State Electrolyte for Dye-Sensitized Solar Cells by Self-assembly. Chemistry of Materials, 2006, 18, 5173-5177.	6.7	96
320	Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. Carbon, 2006, 44, 1601-1604.	10.3	29
321	The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006, 27, 3396-3403.	11.4	327
322	Synthesis of ordered small pore mesoporous silicates with tailorable pore structures and sizes by polyoxyethylene alkyl amine surfactant. Microporous and Mesoporous Materials, 2006, 90, 23-31.	4.4	33
323	Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. Microporous and Mesoporous Materials, 2006, 91, 59-69.	4.4	55
324	Hexylene- and Octylene-Bridged Polysilsesquioxane Hybrid Crystals Self-Assembled by Dimeric Building Blocks with Ring Structures. Chemistry - A European Journal, 2006, 12, 8484-8490.	3.3	23

#	Article	IF	Citations
325	The effect of water content on the preparation of mesoporous monoliths and films. Microporous and Mesoporous Materials, 2005, 79, 283-289.	4.4	17
326	Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. Angewandte Chemie - International Edition, 2005, 44, 7053-7059.	13.8	1,218
327	Three-Dimensional Low Symmetry Mesoporous Silica Structures Templated from Tetra-Headgroup Rigid Bolaform Quaternary Ammonium Surfactant. Journal of the American Chemical Society, 2005, 127, 6780-6787.	13.7	79
328	A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks withla3ì,,dBicontinuous Cubic Structure. Journal of the American Chemical Society, 2005, 127, 13508-13509.	13.7	588
329	Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 2005, 351, 3209-3217.	3.1	128
330	A novel approach for the synthesis of monodispersed porous silica microspheres with high surface area. Journal of Non-Crystalline Solids, 2005, 351, 3593-3599.	3.1	15
331	Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15. Journal of Physical Chemistry B, 2005, 109, 8723-8732.	2.6	270
332	Synthesis and Bio-adsorptive Properties of Large-Pore Periodic Mesoporous Organosilica Rods. Chemistry of Materials, 2005, 17, 6172-6176.	6.7	100
333	Low-Temperature Strategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores. Journal of the American Chemical Society, 2005, 127, 10794-10795.	13.7	251
334	Nonionic Block Copolymer and Anionic Mixed Surfactants Directed Synthesis of Highly Ordered Mesoporous Silica with Bicontinuous Cubic Structure. Chemistry of Materials, 2005, 17, 3228-3234.	6.7	91
335	Synthesis of mesoporous silica with novel structures using rigid bolaform ammonium surfactants. Studies in Surface Science and Catalysis, 2004, 154, 528-532.	1.5	1
336	Nanoporous arrays of metal sulfides templated by mesoporous silica. Studies in Surface Science and Catalysis, 2004, 154, 939-945.	1.5	0
337	Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie - International Edition, 2004, 43, 5980-5984.	13.8	613
338	Ordered, Nanostructured Tin-Based Oxides/Carbon Composite as the Negative-Electrode Material for Lithium-Ion Batteries. Advanced Materials, 2004, 16, 1432-1436.	21.0	348
339	Synthesis and characterization of small pore thick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains. Microporous and Mesoporous Materials, 2004, 67, 135-141.	4.4	51
340	Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an "acid–base pair―route. Microporous and Mesoporous Materials, 2004, 67, 123-133.	4.4	72
341	Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous and Mesoporous Materials, 2004, 73, 121-128.	4.4	218
342	The anion sequence in the phase transformation of mesostructures templated by non-ionic block copolymers. Chemical Communications, 2004, , 2240.	4.1	46

#	Article	IF	Citations
343	Facile Synthesis and Characterization of Novel Mesoporous and Mesorelief Oxides with Gyroidal Structures. Journal of the American Chemical Society, 2004, 126, 865-875.	13.7	297
344	Morphology Development of Mesoporous Materials:  a Colloidal Phase Separation Mechanism. Chemistry of Materials, 2004, 16, 889-898.	6.7	306
345	Microwave-Assisted Solvothermal Synthesis of Radial ZnS Nanoribbons. Chemistry Letters, 2004, 33, 522-523.	1.3	24
346	One-step synthesis of large pore mesoporous metallo-aluminophosphates under nonaqueous media. Studies in Surface Science and Catalysis, 2004, 154, 1111-1117.	1.5	0
347	General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica. Advanced Materials, 2003, 15, 1370-1374.	21.0	421
348	Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angewandte Chemie, 2003, 115, 3254-3258.	2.0	94
349	Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angewandte Chemie - International Edition, 2003, 42, 3146-3150.	13.8	487
350	Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nature Materials, 2003, 2, 159-163.	27.5	445
351	Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologiesElectronic supplementary information (ESI) available: XRD and nitrogen sorption isotherms for MPSs used in bioimmobilization. See http://www.rsc.org/suppdata/cc/b3/b304391f/. Chemical Communications. 2003 2140.	4.1	254
352	One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays from Mesostructured Frameworks. Journal of the American Chemical Society, 2003, 125, 4724-4725.	13.7	203
353	Synthesis of Mesoporous Silica from Commercial Poly(ethylene oxide)/Poly(butylene oxide) Copolymers:Â Toward the Rational Design of Ordered Mesoporous Materials. Journal of Physical Chemistry B, 2003, 107, 13368-13375.	2.6	82
354	Synthesis of Highly Ordered Thermally Stable Cubic Mesostructured Zirconium Oxophosphate Templated by Tri-Headgroup Quaternary Ammonium Surfactants. Chemistry of Materials, 2003, 15, 4046-4051.	6.7	39
355	Recent advances in the synthesis of non-siliceous mesoporous materials. Current Opinion in Solid State and Materials Science, 2003, 7, 191-197.	11.5	109
356	Synthesis of Ordered Three-Dimensional Large-pore Mesoporous Silica and Its Replication to Ordered Nanoporous Carbon. Studies in Surface Science and Catalysis, 2003, 146, 97-100.	1.5	2
357	Morphological control of highly ordered mesoporous carbon. Studies in Surface Science and Catalysis, 2003, 146, 45-48.	1.5	18
358	Strategies to Fabricate Large-Pore Three-Dimensional Mesoporous Materials with Versatile Applications. Studies in Surface Science and Catalysis, 2003, , 9-14.	1.5	0
359	Ordered Nanowire Arrays of Metal Sulfides Templated by Mesoporous Silica SBA-15 via a Simple Impregnation Reaction. Chemistry Letters, 2003, 32, 824-825.	1.3	39
360	The Upper Temperature Limit in Cooperative Assembly of Ordered Mesoporous Materials. Chemistry Letters, 2003, 32, 660-661.	1.3	12

#	Article	IF	Citations
361	FABRICATION OF THREE-DIMENSIONAL LARGE-PORE MESOPOROUS CHANNELS BASED ON ORDERED MESOPOROUS SILICA MATERIALS. , 2002, , .		O
362	Synthesis of Siliceous Hollow Spheres with Ultra Large Mesopore Wall Structures by Reverse Emulsion Templating. Chemistry Letters, 2002, 31, 62-63.	1.3	70
363	Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of la3d symmetry. Chemical Communications, 2002, , 2842-2843.	4.1	144
364	Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. Chemical Communications, 2002, , 1824-1825.	4.1	148
365	Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts. Journal of the American Chemical Society, 2002, 124, 4556-4557.	13.7	311
366	Microwave assisted template removal of siliceous porous materialsElectronic supplementary information (ESI) available: syntheses, XRD patterns, SEM image, Pb2+ extraction images, 29Si MAS NMR and TG curves. See http://www.rsc.org/suppdata/cc/b2/b202180c/. Chemical Communications, 2002, , 1186-1187.	4.1	209
367	Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with la3d Symmetry. Angewandte Chemie, 2002, 114, 4032-4034.	2.0	25
368	Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with Ia3d Symmetry. Angewandte Chemie - International Edition, 2002, 41, 3876-3878.	13.8	269
369	High-Yield Synthesis of Periodic Mesoporous Silica Rods and Their Replication to Mesoporous Carbon Rods. Advanced Materials, 2002, 14, 1742-1745.	21.0	342
370	Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chemical Communications, 2001, , 2726-2727.	4.1	122
371	Mesotunnels on the Silica Wall of Ordered SBA-15 to Generate Three-Dimensional Large-Pore Mesoporous Networks. Journal of the American Chemical Society, 2001, 123, 12113-12114.	13.7	177
372	Highly ordered mesoporous silica structures templated by poly(butylene oxide) segment di- and tri-block copolymers. Microporous and Mesoporous Materials, 2001, 44-45, 65-72.	4.4	43
373	Polymorphism of Silica Mesostructures Templated by Poly(Ethylene Oxide)-b-Poly(Butylene Oxide) Diblock Copolymer. Chemistry Letters, 2000, 29, 504-505.	1.3	5
374	Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chemical Communications, 2000, , 575-576.	4.1	245