
Tom H M Ottenhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8955456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4560-4565.	7.1	834
2	Severe Mycobacterial and <i>Salmonella</i> Infections in Interleukin-12 Receptor-Deficient Patients. Science, 1998, 280, 1435-1438.	12.6	782
3	A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, The, 2016, 387, 2312-2322.	13.7	678
4	Innate Immunity to <i>Mycobacterium tuberculosis</i> . Clinical Microbiology Reviews, 2002, 15, 294-309.	13.6	511
5	Vaccines against Tuberculosis: Where Are We and Where Do We Need to Go?. PLoS Pathogens, 2012, 8, e1002607.	4.7	381
6	Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Human Immunology, 2005, 66, 13-20.	2.4	354
7	Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-γ- and CD40L-mediated costimulation. Journal of Leukocyte Biology, 2006, 79, 285-293.	3.3	340
8	Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa. New England Journal of Medicine, 2014, 370, 1712-1723.	27.0	324
9	Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature, 2007, 450, 725-730.	27.8	310
10	NOD2 and Toll-Like Receptors Are Nonredundant Recognition Systems of Mycobacterium tuberculosis. PLoS Pathogens, 2005, 1, e34.	4.7	304
11	Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. European Journal of Immunology, 1997, 27, 2426-2435.	2.9	298
12	Novel human immunodeficiencies reveal the essential role of type-1 cytokines in immunity to intracellular bacteria. Trends in Immunology, 1998, 19, 491-494.	7.5	283
13	The Effect of Type 2 Diabetes Mellitus on the Presentation and Treatment Response of Pulmonary Tuberculosis. Clinical Infectious Diseases, 2007, 45, 428-435.	5.8	270
14	Multifunctional CD4 ⁺ T cells correlate with active <i>Mycobacterium tuberculosis</i> infection. European Journal of Immunology, 2010, 40, 2211-2220.	2.9	270
15	Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes and Infection, 2006, 8, 2052-2060.	1.9	262
16	Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nature Genetics, 2002, 32, 97-105.	21.4	241
17	Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17686-17691.	7.1	234
18	Genetic Association and Expression Studies Indicate a Role of Toll-Like Receptor 8 in Pulmonary Tuberculosis. PLoS Genetics, 2008, 4, e1000218.	3.5	228

#	Article	IF	CITATIONS
19	Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nature Medicine, 2019, 25, 255-262.	30.7	227
20	Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. European Journal of Immunology, 2006, 36, 661-670.	2.9	222
21	Purification of His-Tagged Proteins by Immobilized Chelate Affinity Chromatography: The Benefits from the Use of Organic Solvent. Protein Expression and Purification, 2000, 18, 95-99.	1.3	217
22	Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1198-1208.	5.6	217
23	Human Anti-Inflammatory Macrophages Induce Foxp3+GITR+CD25+ Regulatory T Cells, Which Suppress via Membrane-Bound TGFβ-1. Journal of Immunology, 2008, 181, 2220-2226.	0.8	215
24	Genome-Wide Expression Profiling Identifies Type 1 Interferon Response Pathways in Active Tuberculosis. PLoS ONE, 2012, 7, e45839.	2.5	213
25	Selective stimulation of T helper 2 cytokine responses by the antiâ€psoriasis agent monomethylfumarate. European Journal of Immunology, 1996, 26, 2067-2074.	2.9	207
26	A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine, 2014, 32, 7098-7107.	3.8	199
27	Common variants at 11p13 are associated with susceptibility to tuberculosis. Nature Genetics, 2012, 44, 257-259.	21.4	195
28	Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naã⁻ve human volunteers. Vaccine, 2010, 28, 3571-3581.	3.8	188
29	MVA.85A Boosting of BCG and an Attenuated, phoP Deficient M. tuberculosis Vaccine Both Show Protective Efficacy Against Tuberculosis in Rhesus Macaques. PLoS ONE, 2009, 4, e5264.	2.5	186
30	Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infectious Diseases, The, 2004, 4, 739-749.	9.1	182
31	Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8029-8034.	7.1	178
32	Recognition of Stage-Specific Mycobacterial Antigens Differentiates between Acute and Latent Infections with Mycobacterium tuberculosis. Vaccine Journal, 2006, 13, 179-186.	3.1	174
33	Antigenic Equivalence of Human T-Cell Responses to <i>Mycobacterium tuberculosis</i> -Specific RD1-Encoded Protein Antigens ESAT-6 and Culture Filtrate Protein 10 and to Mixtures of Synthetic Peptides. Infection and Immunity, 2000, 68, 3314-3321.	2.2	171
34	Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. European Respiratory Journal, 2016, 48, 1751-1763.	6.7	165
35	Control of human host immunity to mycobacteria. Tuberculosis, 2005, 85, 53-64.	1.9	158
36	Tuberculin Skin Testing and In Vitro T Cell Responses to ESATâ€6 and Culture Filtrate Protein 10 after Infection with <i>Mycobacterium marinum</i> or <i>M. kansasii</i> . Journal of Infectious Diseases, 2002, 186, 1797-1807.	4.0	155

#	Article	IF	CITATIONS
37	HLA-DO is a negative modulator of HLA-DM-mediated MHC class II peptide loading. Current Biology, 1997, 7, 950-957.	3.9	154
38	Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood, 2000, 95, 3162-3167.	1.4	154
39	Epitope Mapping of the Immunodominant Antigen TB10.4 and the Two Homologous Proteins TB10.3 and TB12.9, Which Constitute a Subfamily of the esat-6 Gene Family. Infection and Immunity, 2002, 70, 5446-5453.	2.2	153
40	ldentification of Major Epitopes of <i>Mycobacterium tuberculosis</i> AG85B That Are Recognized by HLA-A*0201-Restricted CD8+ T Cells in HLA-Transgenic Mice and Humans. Journal of Immunology, 2000, 165, 6463-6471.	0.8	152
41	Update on tuberculosis biomarkers: From correlates of risk, to correlates of active disease and of cure from disease. Respirology, 2018, 23, 455-466.	2.3	150
42	Immunogenicity of Novel DosR Regulon-Encoded Candidate Antigens of <i>Mycobacterium tuberculosis</i> in Three High-Burden Populations in Africa. Vaccine Journal, 2009, 16, 1203-1212.	3.1	148
43	Dynamic Changes in Pro- and Anti-Inflammatory Cytokine Profiles and Gamma Interferon Receptor Signaling Integrity Correlate with Tuberculosis Disease Activity and Response to Curative Treatment. Infection and Immunity, 2007, 75, 820-829.	2.2	147
44	The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLR-MYD88 to Autophagic Defense. Cell Host and Microbe, 2014, 15, 753-767.	11.0	147
45	Mycobacterial growth inhibition is associated with trained innate immunity. Journal of Clinical Investigation, 2018, 128, 1837-1851.	8.2	144
46	Mycobacterium tuberculosis Peptides Presented by HLA-E Molecules Are Targets for Human CD8+ T-Cells with Cytotoxic as well as Regulatory Activity. PLoS Pathogens, 2010, 6, e1000782.	4.7	141
47	Cloned suppressor T cells from a lepromatous leprosy patient suppress Mycobacterium leprae reactive helper T cells. Nature, 1986, 322, 462-464.	27.8	140
48	Immunogenicity of Eight Dormancy Regulon-Encoded Proteins of Mycobacterium tuberculosis in DNA-Vaccinated and Tuberculosis-Infected Mice. Infection and Immunity, 2007, 75, 941-949.	2.2	138
49	Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathogens, 2016, 12, e1005687.	4.7	138
50	Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax, 2016, 71, 785-794.	5.6	134
51	New pathways of protective and pathological host defense to mycobacteria. Trends in Microbiology, 2012, 20, 419-428.	7.7	132
52	The ESX-5 Secretion System of <i>Mycobacterium marinum</i> Modulates the Macrophage Response. Journal of Immunology, 2008, 181, 7166-7175.	0.8	131
53	T Cell Assays and MIATA: The Essential Minimum for Maximum Impact. Immunity, 2012, 37, 1-2.	14.3	131
54	Antibody glycosylation in inflammation, disease and vaccination. Seminars in Immunology, 2018, 39, 102-110.	5.6	131

#	Article	IF	CITATIONS
55	Mycobacterium leprae-specific protein antigens defined by cloned human helper T cells. Nature, 1986, 319, 66-68.	27.8	129
56	Natural T-helper immunity against human papillomavirus type 16 (hpv16) e7-derived peptide epitopes in patients with hpv16-positive cervical lesions: Identification of 3 human leukocyte antigen class ii-restricted epitopes. International Journal of Cancer, 2001, 91, 612-618.	5.1	129
57	Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious Diseases and Vaccination. Frontiers in Immunology, 2015, 6, 217.	4.8	129
58	Tuberculosis Biomarkers: From Diagnosis to Protection. Gastroenterology Insights, 2016, 8, 6568.	1.2	129
59	Metabolite changes in blood predict the onset of tuberculosis. Nature Communications, 2018, 9, 5208.	12.8	129
60	Identification and Characterization of the ESAT-6 Homologue of Mycobacterium leprae and T-Cell Cross-Reactivity with Mycobacterium tuberculosis. Infection and Immunity, 2002, 70, 2544-2548.	2.2	126
61	Identification of T-Cell Antigens Specific for Latent Mycobacterium Tuberculosis Infection. PLoS ONE, 2009, 4, e5590.	2.5	126
62	Role of Tumor Necrosis Factor–α and Interleukinâ€10 Promoter Gene Polymorphisms in Leprosy. Journal of Infectious Diseases, 2002, 186, 1687-1691.	4.0	122
63	Human Host Defense and Cytokines in Mycobacterial Infectious Diseases: Interleukinâ€18 Cannot Compensate for Genetic Defects in the Interleukinâ€12 System. Clinical Infectious Diseases, 2002, 35, 210-212.	5.8	122
64	Human CD4 and CD8 regulatory T cells in infectious diseases and vaccination. Human Immunology, 2008, 69, 760-770.	2.4	120
65	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	14.5	119
66	Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against <i>Mycobacterium tuberculosis</i> in human and murine cells. European Journal of Immunology, 2016, 46, 2574-2586.	2.9	118
67	Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine, 2011, 29, 2100-2109.	3.8	117
68	T-Cell Recognition of the HspX Protein of Mycobacterium tuberculosis Correlates with Latent M. tuberculosis Infection but Not with M. bovis BCG Vaccination. Infection and Immunity, 2007, 75, 2914-2921.	2.2	107
69	Discrepancy between Mycobacterium tuberculosis -Specific Gamma Interferon Release Assays Using Short and Prolonged In Vitro Incubation. Vaccine Journal, 2007, 14, 880-885.	3.1	107
70	Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine, 2009, 27, 4010-4017.	3.8	103
71	Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infectious Diseases, The, 2009, 9, 688-698.	9.1	102
72	A High-Throughput Screen for Tuberculosis Progression. PLoS ONE, 2011, 6, e16779.	2.5	101

#	Article	IF	CITATIONS
73	Double―and monofunctional CD4 ⁺ and CD8 ⁺ Tâ€cell responses to <i>Mycobacterium tuberculosis</i> DosR antigens and peptides in longâ€term latently infected individuals. European Journal of Immunology, 2011, 41, 2925-2936.	2.9	101
74	The C-Type Lectin Receptor CLECSF8/CLEC4D Is a Key Component of Anti-Mycobacterial Immunity. Cell Host and Microbe, 2015, 17, 252-259.	11.0	100
75	Human CD8+ T-cells Recognizing Peptides from Mycobacterium tuberculosis (Mtb) Presented by HLA-E Have an Unorthodox Th2-like, Multifunctional, Mtb Inhibitory Phenotype and Represent a Novel Human T-cell Subset. PLoS Pathogens, 2015, 11, e1004671.	4.7	97
76	Lack of Immune Responses to Mycobacterium tuberculosis DosR Regulon Proteins following Mycobacterium bovis BCG Vaccination. Infection and Immunity, 2007, 75, 3523-3530.	2.2	96
77	Antiâ€inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitorâ€treated gastrointestinal stromal tumors. International Journal of Cancer, 2010, 127, 899-909.	5.1	92
78	A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians. BMC Medical Genetics, 2012, 13, 5.	2.1	90
79	Analysis of Mycobacterium tuberculosis-Specific CD8 T-Cells in Patients with Active Tuberculosis and in Individuals with Latent Infection. PLoS ONE, 2009, 4, e5528.	2.5	88
80	Acquired immunodeficiencies and tuberculosis: focus on <scp>HIV</scp> / <scp>AIDS</scp> and diabetes mellitus. Immunological Reviews, 2015, 264, 121-137.	6.0	87
81	Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis. Frontiers in Microbiology, 2014, 5, 517.	3.5	86
82	A Helicopter Perspective on TB Biomarkers: Pathway and Process Based Analysis of Gene Expression Data Provides New Insight into TB Pathogenesis. PLoS ONE, 2013, 8, e73230.	2.5	86
83	Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria. Scientific Reports, 2016, 6, 31291.	3.3	85
84	Lateral flow assay for simultaneous detection of cellular- and humoral immune responses. Clinical Biochemistry, 2011, 44, 1241-1246.	1.9	84
85	An Unbiased Genome-Wide <i>Mycobacterium tuberculosis</i> Gene Expression Approach To Discover Antigens Targeted by Human T Cells Expressed during Pulmonary Infection. Journal of Immunology, 2013, 190, 1659-1671.	0.8	83
86	Tuberculosis vaccines: Opportunities and challenges. Respirology, 2018, 23, 359-368.	2.3	82
87	Variable BCG efficacy in rhesus populations: Pulmonary BCG provides protection where standard intra-dermal vaccination fails. Tuberculosis, 2017, 104, 46-57.	1.9	80
88	Induction of antigen-specific CD4+ HLA-DR-restricted cytotoxic T lymphocytes as well as nonspecific nonrestricted killer cells by the recombinant mycobacterial 65-kDa heat-shock protein. European Journal of Immunology, 1990, 20, 369-377.	2.9	77
89	Severe Mycobacterium bovis BCG infections in a large series of novel IL–12 receptor β1 deficient patients and evidence for the existence of partial IL–12 receptor β1 deficiency. European Journal of Immunology, 2003, 33, 59-69.	2.9	76
90	Transcriptional and inflammasomeâ€mediated pathways for the induction of ILâ€1β production by <i>Mycobacterium tuberculosis</i> . European Journal of Immunology, 2009, 39, 1914-1922.	2.9	75

#	Article	IF	CITATIONS
91	Use of ESATâ€6 and CFPâ€10 Antigens for Diagnosis of Extrapulmonary Tuberculosis. Journal of Infectious Diseases, 2001, 183, 175-176.	4.0	74
92	Residual Type 1 Immunity in Patients Genetically Deficient for Interleukin 12 Receptor β1 (IL-12Rβ1). Journal of Experimental Medicine, 2000, 192, 517-528.	8.5	73
93	<i>Mycobacterium leprae</i> -Specific, HLA Class II-Restricted Killing of Human Schwann Cells by CD4+ Th1 Cells: A Novel Immunopathogenic Mechanism of Nerve Damage in Leprosy. Journal of Immunology, 2001, 166, 5883-5888.	0.8	73
94	Infection with <i>Mycobacterium tuberculosis</i> Beijing Genotype Strains Is Associated with Polymorphisms in <i>SLC11A1/NRAMP1</i> in Indonesian Patients with Tuberculosis. Journal of Infectious Diseases, 2009, 200, 1671-1674.	4.0	72
95	Tuberculin Skin Testing Compared with T-Cell Responses to <i>Mycobacterium tuberculosis</i> -Specific and Nonspecific Antigens for Detection of Latent Infection in Persons with Recent Tuberculosis Contact. Vaccine Journal, 2001, 8, 1089-1096.	2.6	71
96	Low Induction of Proinflammatory Cytokines Parallels Evolutionary Success of Modern Strains within the Mycobacterium tuberculosis Beijing Genotype. Infection and Immunity, 2013, 81, 3750-3756.	2.2	71
97	Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines. PLoS ONE, 2015, 10, e0138042.	2.5	71
98	Hostâ€directed therapy to combat mycobacterial infections*. Immunological Reviews, 2021, 301, 62-83.	6.0	71
99	A Systematic Review on Novel Mycobacterium tuberculosis Antigens and Their Discriminatory Potential for the Diagnosis of Latent and Active Tuberculosis. Frontiers in Immunology, 2018, 9, 2476.	4.8	70
100	Interleukin-10 promoter single-nucleotide polymorphisms as markers for disease susceptibility and disease severity in leprosy. Genes and Immunity, 2004, 5, 592-595.	4.1	69
101	Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. Journal of Immunology Research, 2016, 2016, 1-11.	2.2	69
102	New Genome-Wide Algorithm Identifies Novel In-Vivo Expressed Mycobacterium Tuberculosis Antigens Inducing Human T-Cell Responses with Classical and Unconventional Cytokine Profiles. Scientific Reports, 2016, 6, 37793.	3.3	69
103	Increased IgG1, IFN-γ, TNF-α and IL-6 responses to Mycobacterium tuberculosis antigens in patients with Tuberculosis are lower after chemotherapy. International Immunology, 2010, 22, 775-782.	4.0	68
104	Identification of Human T-Cell Responses to Mycobacterium tuberculosis Resuscitation-Promoting Factors in Long-Term Latently Infected Individuals. Vaccine Journal, 2011, 18, 676-683.	3.1	67
105	T-Cell Regulation in Lepromatous Leprosy. PLoS Neglected Tropical Diseases, 2014, 8, e2773.	3.0	67
106	Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine, 2011, 29, 4761-4770.	3.8	65
107	Differential gene expression of activating FcÎ ³ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clinical Microbiology and Infection, 2014, 20, O230-O238.	6.0	65
108	Longitudinal Immune Responses and Gene Expression Profiles in Type 1 Leprosy Reactions. Journal of Clinical Immunology, 2014, 34, 245-255.	3.8	63

Tom H M Ottenhoff

#	Article	IF	CITATIONS
109	NF-κB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight, 2018, 3, .	5.0	63
110	Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study. Lancet Infectious Diseases, The, 2018, 18, 738-748.	9.1	62
111	Regulation of Mycobacterial Heat-Shock Protein-Reactive T Cells by HLA Class II Molecules: Lessons from Leprosy. Immunological Reviews, 1991, 121, 171-191.	6.0	61
112	Analysis of Immune Responses against a Wide Range of Mycobacterium tuberculosis Antigens in Patients with Active Pulmonary Tuberculosis. Vaccine Journal, 2012, 19, 1907-1915.	3.1	61
113	Postgenomic Approach To Identify Novel Mycobacterium leprae Antigens with Potential To Improve Immunodiagnosis of Infection. Infection and Immunity, 2005, 73, 5636-5644.	2.2	59
114	The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. Microbes and Infection, 2010, 12, 910-918.	1.9	59
115	Field-Evaluation of a New Lateral Flow Assay for Detection of Cellular and Humoral Immunity against Mycobacterium leprae. PLoS Neglected Tropical Diseases, 2014, 8, e2845.	3.0	59
116	Human CD8 T lymphocytes recognize <i>Mycobacterium tuberculosis</i> antigens presented by HLAâ€E during active tuberculosis and express type 2 cytokines. European Journal of Immunology, 2015, 45, 1069-1081.	2.9	59
117	Harnessing donor unrestricted T-cells for new vaccines against tuberculosis. Vaccine, 2019, 37, 3022-3030.	3.8	59
118	Binding of a major T cell epitope of mycobacteria to a specific pocket within HLA-DRw17(DR3) molecules. European Journal of Immunology, 1992, 22, 107-113.	2.9	57
119	Presentation of Interleukin-12/-23 Receptor β1 Deficiency with Various Clinical Symptoms of Salmonella Infections. Journal of Clinical Immunology, 2006, 26, 1-6.	3.8	56
120	Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Frontiers in Immunology, 2017, 8, 294.	4.8	56
121	First in humans: A new molecularly defined vaccine shows excellent safety and strong induction of long-lived <i>Mycobacterium tuberculosis</i> -specific Th1-cell like responses. Hum Vaccin, 2010, 6, 1007-1015.	2.4	55
122	CXCR6 Is a Marker for Protective Antigen-Specific Cells in the Lungs after Intranasal Immunization against Mycobacterium tuberculosis. Infection and Immunity, 2011, 79, 3328-3337.	2.2	55
123	Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Vaccine Journal, 2015, 22, 778-788.	3.1	55
124	Cross-Reactive Immunity to <i>Mycobacterium tuberculosis</i> DosR Regulon-Encoded Antigens in Individuals Infected with Environmental, Nontuberculous Mycobacteria. Infection and Immunity, 2009, 77, 5071-5079.	2.2	54
125	Higher Frequency of T-Cell Response to M. tuberculosis Latency Antigen Rv2628 at the Site of Active Tuberculosis Disease than in Peripheral Blood. PLoS ONE, 2011, 6, e27539.	2.5	54
126	Novel mechanisms in the immunopathogenesis of leprosy nerve damage: The role of Schwann cells, T cells and Mycobacterium leprae. Immunology and Cell Biology, 2000, 78, 349-355.	2.3	53

#	Article	IF	CITATIONS
127	Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-ÃŽÂ ³ receptor. Netherlands Journal of Medicine, 2001, 59, 140-151.	0.5	52
128	Potential of Mycobacterium tuberculosis resuscitation-promoting factors as antigens in novel tuberculosis sub-unit vaccines. Microbes and Infection, 2012, 14, 86-95.	1.9	52
129	Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Seminars in Immunology, 2018, 39, 88-101.	5.6	52
130	Genome-Based In Silico Identification of New <i>Mycobacterium tuberculosis</i> Antigens Activating Polyfunctional CD8+ T Cells in Human Tuberculosis. Journal of Immunology, 2011, 186, 1068-1080.	0.8	50
131	Ten challenges for TB biomarkers. Tuberculosis, 2012, 92, S17-S20.	1.9	50
132	T cell responses to DosR and Rpf proteins in actively and latently infected individuals from Colombia. Tuberculosis, 2012, 92, 148-159.	1.9	50
133	Potential of Host Markers Produced by Infection Phase-Dependent Antigen-Stimulated Cells for the Diagnosis of Tuberculosis in a Highly Endemic Area. PLoS ONE, 2012, 7, e38501.	2.5	50
134	Multi-center evaluation of a user-friendly lateral flow assay to determine IP-10 and CCL4 levels in blood of TB and non-TB cases in Africa. Clinical Biochemistry, 2016, 49, 22-31.	1.9	49
135	B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Frontiers in Immunology, 2021, 12, 640168.	4.8	49
136	Genetic variations in the interleukin-12/interleukin-23 receptor (β1) chain, and implications for IL-12 and IL-23 receptor structure and function. Immunogenetics, 2003, 54, 817-829.	2.4	48
137	Association of polymorphisms in IL-12/IFN-γ pathway genes with susceptibility to pulmonary tuberculosis in Indonesia. Tuberculosis, 2007, 87, 303-311.	1.9	48
138	Analysis of Host Responses to Mycobacterium tuberculosis Antigens in a Multi-Site Study of Subjects with Different TB and HIV Infection States in Sub-Saharan Africa. PLoS ONE, 2013, 8, e74080.	2.5	48
139	A dose-dependent plasma signature of the safety and immunogenicity of the rVSV-Ebola vaccine in Europe and Africa. Science Translational Medicine, 2017, 9, .	12.4	48
140	BCG revaccination boosts adaptive polyfunctional Th1/Th17 and innate effectors in IGRA+ and IGRA– Indian adults. JCI Insight, 2019, 4, .	5.0	48
141	Human host genetic factors in mycobacterial and Salmonella infection: lessons from single gene disorders in IL-12/IL-23-dependent signaling that affect innate and adaptive immunity. Microbes and Infection, 2006, 8, 1167-1173.	1.9	47
142	Plasma granulysin levels and cellular interferon-Î ³ production correlate with curative host responses in tuberculosis, while plasma interferon-Î ³ levels correlate with tuberculosis disease activity in adults. Tuberculosis, 2007, 87, 312-321.	1.9	47
143	Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine, 2017, 35, 1652-1661.	3.8	47
144	Combined chemical genetics and data-driven bioinformatics approach identifies receptor tyrosine kinase inhibitors as host-directed antimicrobials. Nature Communications, 2018, 9, 358.	12.8	47

Tom H M Ottenhoff

#	Article	IF	CITATIONS
145	MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathogens, 2017, 13, e1006384.	4.7	47
146	Monokine induced by interferon gamma and IFN-Î ³ response to a fusion protein of Mycobacterium tuberculosis ESAT-6 and CFP-10 in Brazilian tuberculosis patients. Microbes and Infection, 2006, 8, 45-51.	1.9	46
147	Identification of Major Factors Influencing ELISpot-Based Monitoring of Cellular Responses to Antigens from Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e7972.	2.5	46
148	Innovative Strategies to Identify M. tuberculosis Antigens and Epitopes Using Genome-Wide Analyses. Frontiers in Immunology, 2014, 5, 256.	4.8	45
149	Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent <i>Mycobacterium tuberculosis</i> infection. Biological Chemistry, 2008, 389, 497-511.	2.5	44
150	<scp>CD</scp> 39 is involved in mediating suppression by <i><scp>M</scp>ycobacterium bovis</i> <scp>BCG</scp> â€activated human <scp>CD</scp> 8 ⁺ <scp>CD</scp> 39 ⁺ regulatory <scp>T</scp> Âcells. European Journal of Immunology, 2013, 43, 1925-1932.	2.9	44
151	TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Frontiers in Immunology, 2017, 8, 1203.	4.8	44
152	Africa-wide evaluation of host biomarkers in QuantiFERON supernatants for the diagnosis of pulmonary tuberculosis. Scientific Reports, 2018, 8, 2675.	3.3	44
153	Host Immune Responses Differ between M. africanum- and M. tuberculosis-Infected Patients following Standard Anti-tuberculosis Treatment. PLoS Neglected Tropical Diseases, 2016, 10, e0004701.	3.0	43
154	Complement Component C1q as Serum Biomarker to Detect Active Tuberculosis. Frontiers in Immunology, 2018, 9, 2427.	4.8	43
155	A Serum Circulating miRNA Signature for Short-Term Risk of Progression to Active Tuberculosis Among Household Contacts. Frontiers in Immunology, 2018, 9, 661.	4.8	42
156	Overcoming the global crisis: "Yes, we canâ€, but also for TB … ?. European Journal of Immunology, 2009, 39, 2014-2020.	2.9	41
157	Pro- and Anti-Inflammatory Cytokines against Rv2031 Are Elevated during Latent Tuberculosis: A Study in Cohorts of Tuberculosis Patients, Household Contacts and Community Controls in an Endemic Setting. PLoS ONE, 2015, 10, e0124134.	2.5	41
158	Ebola vaccine R&D: Filling the knowledge gaps. Science Translational Medicine, 2015, 7, 317ps24.	12.4	41
159	<i>Mycobacterium tuberculosis</i> â€specific CD4 ⁺ Tâ€cell response is increased, and Treg cells decreased, in anthelminticâ€treated patients with latent TB. European Journal of Immunology, 2016, 46, 752-761.	2.9	41
160	Plasma metabolomics in tuberculosis patients with and without concurrent type 2 diabetes at diagnosis and during antibiotic treatment. Scientific Reports, 2019, 9, 18669.	3.3	41
161	DISSEMINATED MYCOBACTERIUM PEREGRINUM INFECTION IN A CHILD WITH COMPLETE INTERFERON-GAMMA RECEPTOR-1 DEFICIENCY. Pediatric Infectious Disease Journal, 2003, 22, 378-380.	2.0	40
162	Atypical Human Effector/Memory CD4+ T Cells With a Naive-Like Phenotype. Frontiers in Immunology, 2018, 9, 2832.	4.8	40

Том H M Ottenhoff

#	Article	IF	CITATIONS
163	Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome. Frontiers in Immunology, 2019, 10, 527.	4.8	40
164	Detailed characterization of human <i>Mycobacterium tuberculosis</i> specific HLA‣ restricted CD8 ⁺ TÂcells. European Journal of Immunology, 2018, 48, 293-305.	2.9	39
165	Identification of Probable Early-Onset Biomarkers for Tuberculosis Disease Progression. PLoS ONE, 2011, 6, e25230.	2.5	39
166	HLA and Leprosy in the Pre and Postgenomic Eras. Human Immunology, 2006, 67, 439-445.	2.4	38
167	Human deficiencies in type 1 cytokine receptors reveal the essential role of type 1 cytokines in immunity to intracellular bacteria. Microbes and Infection, 2000, 2, 1559-1566.	1.9	37
168	Circulating Mycobacterium tuberculosis DosR latency antigen-specific, polyfunctional, regulatory IL10+ Th17 CD4 T-cells differentiate latent from active tuberculosis. Scientific Reports, 2017, 7, 11948.	3.3	37
169	Effectiveness of Stress-Reducing Interventions on the Response to Challenges to the Immune System: A Meta-Analytic Review. Psychotherapy and Psychosomatics, 2019, 88, 274-286.	8.8	37
170	Patients with Concurrent Tuberculosis and Diabetes Have a Pro-Atherogenic Plasma Lipid Profile. EBioMedicine, 2018, 32, 192-200.	6.1	36
171	Immunological and functional characterization of Mycobacterium leprae protein antigens: an overview. Molecular Microbiology, 1995, 18, 791-800.	2.5	35
172	Pneumonia caused by Mycobacterium kansasii in a series of patients without recognised immune defect. Clinical Microbiology and Infection, 2004, 10, 738-748.	6.0	34
173	CD8+ Regulatory T Cells, and Not CD4+ T Cells, Dominate Suppressive Phenotype and Function after In Vitro Live Mycobacterium bovis-BCG Activation of Human Cells. PLoS ONE, 2014, 9, e94192.	2.5	34
174	Short-term high-fat diet increases macrophage markers in skeletal muscle accompanied by impaired insulin signalling in healthy male subjects. Clinical Science, 2015, 128, 143-151.	4.3	34
175	Potential of DosR and Rpf antigens from Mycobacterium tuberculosis to discriminate between latent and active tuberculosis in a tuberculosis endemic population of Medellin Colombia. BMC Infectious Diseases, 2018, 18, 26.	2.9	34
176	Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Frontiers in Immunology, 2020, 11, 36.	4.8	34
177	Mannose Receptor Mediated Uptake of Antigens Strongly Enhances HLA-Class II Restricted Antigen Presentation by Cultured Dendritic Cells. Advances in Experimental Medicine and Biology, 1997, 417, 171-174.	1.6	34
178	Molecular complementation of IL-12Rβ1 deficiency reveals functional differences between IL-12Rβ1 alleles including partial IL-12Rβ1 deficiency. Human Molecular Genetics, 2005, 14, 3847-3855.	2.9	33
179	Biomarkers Can Identify Pulmonary Tuberculosis in HIV-infected Drug Users Months Prior to Clinical Diagnosis. EBioMedicine, 2015, 2, 172-179.	6.1	33
180	Use of lateral flow assays to determine IP-10 and CCL4 levels in pleural effusions and whole blood for TB diagnosis. Tuberculosis, 2016, 96, 31-36.	1.9	33

#	Article	IF	CITATIONS
181	Guidance for Studies Evaluating the Accuracy of Tuberculosis Triage Tests. Journal of Infectious Diseases, 2019, 220, S116-S125.	4.0	33
182	Improved long-term protection against Mycobacterium tuberculosis Beijing/W in mice after intra-dermal inoculation of recombinant BCG expressing latency associated antigens. Vaccine, 2011, 29, 8740-8744.	3.8	32
183	Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis. Vaccine Journal, 2015, 22, 1060-1069.	3.1	32
184	Clinical Immunology and Multiplex Biomarkers of Human Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018515-a018515.	6.2	32
185	Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathogens, 2019, 15, e1007724.	4.7	32
186	Multifunctional T Cell Response to DosR and Rpf Antigens Is Associated with Protection in Long-Term Mycobacterium tuberculosis-Infected Individuals in Colombia. Vaccine Journal, 2016, 23, 813-824.	3.1	31
187	Human suppressor T cell clones lack CD28. European Journal of Immunology, 1990, 20, 1281-1288.	2.9	30
188	A sensitive fluorometric assay for quantitatively measuring specific peptide binding to HLA class I and class II molecules. Journal of Immunological Methods, 1997, 200, 89-97.	1.4	30
189	Simultaneous Immunization against Tuberculosis. PLoS ONE, 2011, 6, e27477.	2.5	30
190	Combination of gene expression patterns in whole blood discriminate between tuberculosis infection states. BMC Infectious Diseases, 2014, 14, 257.	2.9	30
191	Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children. Scientific Reports, 2017, 7, 5839.	3.3	30
192	IL-12 receptor deficiency revisited: IL-23-mediated signaling is also impaired in human genetic IL-12 receptorβ1 deficiency. European Journal of Immunology, 2003, 33, 3393-3397.	2.9	29
193	Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. JCI Insight, 2016, 1, e88843.	5.0	29
194	Study of the antibody response against Mycobacterium tuberculosis antigens in Warao Amerindian children in Venezuela. Memorias Do Instituto Oswaldo Cruz, 2004, 99, 517-524.	1.6	29
195	Optimisation, harmonisation and standardisation of the direct mycobacterial growth inhibition assay using cryopreserved human peripheral blood mononuclear cells. Journal of Immunological Methods, 2019, 469, 1-10.	1.4	28
196	Human Deficiencies in Type-1 Cytokine Receptors Reveal the Essential Role of Type-1 Cytokines in Immunity to Intracellular Bacteria. Advances in Experimental Medicine and Biology, 2003, 531, 279-294.	1.6	28
197	A multistage-polyepitope vaccine protects against Mycobacterium tuberculosis infection in HLA-DR3 transgenic mice. Vaccine, 2012, 30, 7513-7521.	3.8	27
198	Impaired Immune Response to Primary but Not to Booster Vaccination Against Hepatitis B in Older Adults. Frontiers in Immunology, 2018, 9, 1035.	4.8	27

#	Article	IF	CITATIONS
199	Disparate Tuberculosis Disease Development in Macaque Species Is Associated With Innate Immunity. Frontiers in Immunology, 2019, 10, 2479.	4.8	27
200	Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Scientific Reports, 2020, 10, 7085.	3.3	27
201	Altered Peptide Ligands of Islet Autoantigen Imogen 38 Inhibit Antigen Specific T Cell Reactivity in Human Type-1 Diabetes. Journal of Autoimmunity, 1998, 11, 353-361.	6.5	26
202	Host-Pathogen Interactions in Latent Mycobacterium tuberculosis Infection: Identification of New Targets for Tuberculosis Intervention. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2008, 8, 15-29.	1.2	26
203	Two Patients with Complete Defects in Interferon Gamma Receptor-Dependent Signaling. Journal of Clinical Immunology, 2007, 27, 490-496.	3.8	25
204	Enhancing Sensitivity of Detection of Immune Responses to <i>Mycobacterium leprae</i> Peptides in Whole-Blood Assays. Vaccine Journal, 2010, 17, 993-1004.	3.1	25
205	The influence of influenza virus infections on the development of tuberculosis. Tuberculosis, 2013, 93, 338-342.	1.9	25
206	The in vivo expressed Mycobacterium tuberculosis (IVE-TB) antigen Rv2034 induces CD4+ T-cells that protect against pulmonary infection in HLA-DR transgenic mice and guinea pigs. Vaccine, 2014, 32, 3580-3588.	3.8	25
207	Approaching a diagnostic point-of-care test for pediatric tuberculosis through evaluation of immune biomarkers across the clinical disease spectrum. Scientific Reports, 2016, 6, 18520.	3.3	25
208	Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Frontiers in Immunology, 2021, 12, 637164.	4.8	25
209	Serum Biomarker Profile Including CCL1, CXCL10, VEGF, and Adenosine Deaminase Activity Distinguishes Active From Remotely Acquired Latent Tuberculosis. Frontiers in Immunology, 2021, 12, 725447.	4.8	25
210	KLRG1 and PD-1 expression are increased on T-cells following tuberculosis-treatment and identify cells with different proliferative capacities in BCC-vaccinated adults. Tuberculosis, 2016, 97, 163-171.	1.9	24
211	Differences in IgG responses against infection phase related Mycobacterium tuberculosis (Mtb) specific antigens in individuals exposed or not to Mtb correlate with control of TB infection and progression. Tuberculosis, 2017, 106, 25-32.	1.9	24
212	Human CD4 T-Cells With a Naive Phenotype Produce Multiple Cytokines During Mycobacterium Tuberculosis Infection and Correlate With Active Disease. Frontiers in Immunology, 2018, 9, 1119.	4.8	24
213	Whole-blood transcriptomic signatures induced during immunization by chloroquine prophylaxis and Plasmodium falciparum sporozoites. Scientific Reports, 2019, 9, 8386.	3.3	24
214	The mammalian cell entry operon 1 (mce1) of Mycobacterium leprae and Mycobacterium tuberculosis. Microbial Pathogenesis, 1999, 27, 173-177.	2.9	23
215	Humoral Responses to Rv1733c, Rv0081, Rv1735c, and Rv1737c DosR Regulon-Encoded Proteins of Mycobacterium tuberculosis in Individuals with Latent Tuberculosis Infection. Journal of Immunology Research, 2017, 2017, 1-8.	2.2	23
216	Vaccines for Leprosy and Tuberculosis: Opportunities for Shared Research, Development, and Application. Frontiers in Immunology, 2018, 9, 308.	4.8	23

#	Article	IF	CITATIONS
217	Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax, 2022, 77, 408-416.	5.6	23
218	T cell immune responses to mycobacterial antigens in Brazilian tuberculosis patients and controls. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99, 699-707.	1.8	22
219	Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB. PLoS ONE, 2013, 8, e68121.	2.5	22
220	Use of Resuscitation-Promoting Factor Proteins Improves the Sensitivity of Culture-based Tuberculosis Testing in Special Samples. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 612-614.	5.6	22
221	Dysregulation of Apoptosis Is a Risk Factor for Tuberculosis Disease Progression. Journal of Infectious Diseases, 2015, 212, 1469-1479.	4.0	22
222	Antibody Subclass and Glycosylation Shift Following Effective TB Treatment. Frontiers in Immunology, 2021, 12, 679973.	4.8	22
223	T cell receptor and peptide-contacting residues in the HLA-DR17(3) β1 chain. European Journal of Immunology, 1994, 24, 3241-3244.	2.9	21
224	Focused human gene expression profiling using dual-color reverse transcriptase multiplex ligation-dependent probe amplification. Vaccine, 2015, 33, 5282-5288.	3.8	21
225	Identification of a systemic interferon-Î ³ inducible antimicrobial gene signature in leprosy patients undergoing reversal reaction. PLoS Neglected Tropical Diseases, 2019, 13, e0007764.	3.0	21
226	Whole blood RNA signatures in leprosy patients identify reversal reactions before clinical onset: a prospective, multicenter study. Scientific Reports, 2019, 9, 17931.	3.3	21
227	Cell-Mediated Immune Responses to in vivo-Expressed and Stage-Specific Mycobacterium tuberculosis Antigens in Latent and Active Tuberculosis Across Different Age Groups. Frontiers in Immunology, 2020, 11, 103.	4.8	21
228	A novel, highly efficient peptide-HLA class I binding assay using unfolded heavy chain molecules: identification of HIV-1 derived peptides that bind to HLA-A*0201 and HLA-A*0301. Journal of Immunological Methods, 1997, 205, 201-209.	1.4	20
229	Retinal Pigment Epithelial Cells Control Early <i>Mycobacterium tuberculosis</i> Infection via Interferon Signaling. , 2018, 59, 1384.		20
230	Mobilizing unconventional T cells. Science, 2019, 366, 302-303.	12.6	20
231	The role of donorâ€unrestricted Tâ€cells, innate lymphoid cells, and NK cells in antiâ€mycobacterial immunity. Immunological Reviews, 2021, 301, 30-47.	6.0	20
232	The effect of HIV coinfection, HAART and TB treatment on cytokine/chemokine responses to Mycobacterium tuberculosis (Mtb) antigens in active TB patients and latently Mtb infected individuals. Tuberculosis, 2016, 96, 131-140.	1.9	19
233	Radiological Signs of Latent Tuberculosis on Chest Radiography: A Systematic Review and Meta-Analysis. Open Forum Infectious Diseases, 2019, 6, .	0.9	19
234	Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. Journal of Immunology, 2020, 205, 2861-2872.	0.8	19

#	Article	IF	CITATIONS
235	Expression and production of the SERPING1-encoded endogenous complement regulator C1-inhibitor in multiple cohorts of tuberculosis patients. Molecular Immunology, 2020, 120, 187-195.	2.2	19
236	Interleukin-6 and Mycobacterium tuberculosis dormancy antigens improve diagnosis of tuberculosis. Journal of Infection, 2021, 82, 245-252.	3.3	19
237	Effects of BCG vaccination on donor unrestricted T cells in two prospective cohort studies. EBioMedicine, 2022, 76, 103839.	6.1	19
238	Polymorphisms in SP110 are not associated with pulmonary tuberculosis in Indonesians. Infection, Genetics and Evolution, 2012, 12, 1319-1323.	2.3	18
239	Molecular Signatures of Immunity and Immunogenicity in Infection and Vaccination. Frontiers in Immunology, 2017, 8, 1563.	4.8	18
240	Rapid dose-dependent Natural Killer (NK) cell modulation and cytokine responses following human rVSV-ZEBOV Ebolavirus vaccination. Npj Vaccines, 2020, 5, 32.	6.0	18
241	Mycobacterium leprae virulence-associated peptides are indicators of exposure to M. leprae in Brazil, Ethiopia and Nepal. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 112-123.	1.6	17
242	Detection of IgG1 antibodies against Mycobacterium tuberculosis DosR and Rpf antigens in tuberculosis patients before and after chemotherapy. Tuberculosis, 2016, 96, 65-70.	1.9	17
243	Kinetics of T cell-activation molecules in response to Mycobacterium tuberculosis antigens. Memorias Do Instituto Oswaldo Cruz, 2002, 97, 1097-1099.	1.6	16
244	Peptides Derived fromMycobacterium lepraeML1601c Discriminate between Leprosy Patients and Healthy Endemic Controls. Journal of Tropical Medicine, 2012, 2012, 1-11.	1.7	16
245	Combining host-derived biomarkers with patient characteristics improves signature performance in predicting tuberculosis treatment outcomes. Communications Biology, 2020, 3, 359.	4.4	16
246	Cross-laboratory evaluation of multiplex bead assays including independent common reference standards for immunological monitoring of observational and interventional human studies. PLoS ONE, 2018, 13, e0201205.	2.5	15
247	Host Gene Expression Kinetics During Treatment of Tuberculosis in HIV-Coinfected Individuals Is Independent of Highly Active Antiretroviral Therapy. Journal of Infectious Diseases, 2018, 218, 1833-1846.	4.0	15
248	Bioorthogonal Correlative Light-Electron Microscopy of <i>Mycobacterium tuberculosis</i> in Macrophages Reveals the Effect of Antituberculosis Drugs on Subcellular Bacterial Distribution. ACS Central Science, 2020, 6, 1997-2007.	11.3	15
249	Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected mice and zebrafish larvae. Scientific Reports, 2020, 10, 11635.	3.3	15
250	The biologic importance of conserved major histocompatibility complex class II motifs in primates. Human Immunology, 1993, 38, 201-205.	2.4	14
251	A DR17-restricted T cell epitope from a secretedMycobacterium tuberculosis antigen only binds to DR17 molecules at neutral pH. European Journal of Immunology, 1997, 27, 842-847.	2.9	14
252	Clonal Analysis of the T-Cell Response to In Vivo Expressed Mycobacterium tuberculosis Protein Rv2034, Using a CD154 Expression Based T-Cell Cloning Method. PLoS ONE, 2014, 9, e99203.	2.5	14

#	Article	IF	CITATIONS
253	Borderline QuantiFERON results and the distinction between specific responses and test variability. Tuberculosis, 2018, 111, 102-108.	1.9	14
254	Mycobacterium tuberculosis clinical isolates of the Beijing and East-African Indian lineage induce fundamentally different host responses in mice compared to H37Rv. Scientific Reports, 2019, 9, 19922.	3.3	14
255	Interferon-Î ³ responses to Mycobacterium tuberculosis Rpf proteins in contact investigation. Tuberculosis, 2013, 93, 612-617.	1.9	13
256	Host Blood RNA Transcript and Protein Signatures for Sputum-Independent Diagnostics of Tuberculosis in Adults. Frontiers in Immunology, 2020, 11, 626049.	4.8	13
257	HLA-DR/DQ Transgenic, class II deficient mice as a novel model to select for HSP T cell epitopes with immunotherapeutic or preventative vaccine potential. Biotherapy (Dordrecht, Netherlands), 1998, 10, 191-196.	0.7	12
258	ML1419c Peptide Immunization Induces <i>Mycobacterium leprae</i> -Specific HLA-A*0201–Restricted CTL In Vivo with Potential To Kill Live Mycobacteria. Journal of Immunology, 2011, 187, 1393-1402.	0.8	12
259	Immunological characterization of latent tuberculosis infection in a low endemic country. Tuberculosis, 2017, 106, 62-72.	1.9	12
260	A novel view on the pathogenesis of complications after intravesical BCG for bladder cancer. International Journal of Infectious Diseases, 2018, 72, 63-68.	3.3	12
261	Antigen presentation by MHC-E: a putative target for vaccination?. Trends in Immunology, 2022, 43, 355-365.	6.8	12
262	Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Frontiers in Immunology, 2022, 13, 856906.	4.8	12
263	The search for a tuberculosis vaccine: An elusive quest?. Tuberculosis, 2006, 86, 41-46.	1.9	11
264	Influenza Virus Vaccination Induces Interleukin-12/23 Receptor β1 (IL-12/23Rβ1)-Independent Production of Gamma Interferon (IFN-γ) and Humoral Immunity in Patients with Genetic Deficiencies in IL-12/23Rβ1 or IFN-γ Receptor I. Vaccine Journal, 2008, 15, 1171-1175.	3.1	11
265	Significance of Antigen and Epitope Specificity in Tuberculosis. Frontiers in Immunology, 2014, 5, 524.	4.8	11
266	Proof of concept that most borderline Quantiferon results are true antigen-specific responses. European Respiratory Journal, 2017, 50, 1701630.	6.7	11
267	Systemic and pulmonary C1q as biomarker of progressive disease in experimental non-human primate tuberculosis. Scientific Reports, 2020, 10, 6290.	3.3	11
268	Modulation of Protective and Pathological Immunity in Mycobacterial Infections. International Archives of Allergy and Immunology, 1997, 113, 400-408.	2.1	10
269	Two-Hit in vitro T-Cell Stimulation Detects Mycobacterium tuberculosis Infection in QuantiFERON Negative Tuberculosis Patients and Healthy Contacts From Ghana. Frontiers in Immunology, 2019, 10, 1518.	4.8	10
270	Gene expression profiles classifying clinical stages of tuberculosis and monitoring treatment responses in Ethiopian HIV-negative and HIV-positive cohorts. PLoS ONE, 2019, 14, e0226137.	2.5	10

#	Article	IF	CITATIONS
271	Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine. Vaccines, 2021, 9, 67.	4.4	10
272	Discriminative expression of whole blood genes in HIV patients with latent and active TB in Ethiopia. Tuberculosis, 2016, 100, 25-31.	1.9	9
273	Machine Learning Algorithms Evaluate Immune Response to Novel Mycobacterium tuberculosis Antigens for Diagnosis of Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 594030.	3.9	9
274	BLR1 and FCGR1A transcripts in peripheral blood associate with the extent of intrathoracic tuberculosis in children and predict treatment outcome. Scientific Reports, 2016, 6, 38841.	3.3	8
275	In-vivo expressed Mycobacterium tuberculosis antigens recognised in three mouse strains after infection and BCG vaccination. Npj Vaccines, 2021, 6, 81.	6.0	8
276	Host-directed therapies for tuberculosis: quantitative systems pharmacology approaches. Trends in Pharmacological Sciences, 2022, 43, 293-304.	8.7	8
277	Dynamics of the T cell response to Mycobacterium tuberculosis DosR and Rpf antigens in a Colombian population of household contacts of recently diagnosed pulmonary tuberculosis patients. Tuberculosis, 2016, 97, 97-107.	1.9	7
278	HIV-Infected Patients Developing Tuberculosis Disease Show Early Changes in the Immune Response to Novel Mycobacterium tuberculosis Antigens. Frontiers in Immunology, 2021, 12, 620622.	4.8	7
279	Limitations of homology searching for identification of T-cell antigens with library derived mimicry epitopes. Vaccine, 1999, 18, 204-208.	3.8	6
280	Repeatedly negative tuberculin skin tests followed by active tuberculosis in an immunocompetent individual. Netherlands Journal of Medicine, 2001, 58, 76-81.	0.5	6
281	Presence of Human T-Cell Responses to the Mycobacterium leprae 45-Kilodalton Antigen Reflects Infection with or Exposure to M. leprae. Vaccine Journal, 2001, 8, 604-611.	2.6	6
282	The effects of a psychological intervention directed at optimizing immune function: study protocol for a randomized controlled trial. Trials, 2017, 18, 243.	1.6	6
283	Evidence for Highly Variable, Region-Specific Patterns of T-Cell Epitope Mutations Accumulating in Mycobacterium tuberculosis Strains. Frontiers in Immunology, 2019, 10, 195.	4.8	6
284	Abnormalities suggestive of latent tuberculosis infection on chest radiography; how specific are they?. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2019, 15, 100089.	1.3	6
285	A Trial of M72/AS01 _E Vaccine to Prevent Tuberculosis. New England Journal of Medicine, 2020, 382, 1576-1577.	27.0	6
286	An Internet-Based Psychological Intervention With a Serious Game to Improve Vitality, Psychological and Physical Condition, and Immune Function in Healthy Male Adults: Randomized Controlled Trial. Journal of Medical Internet Research, 2020, 22, e14861.	4.3	6
287	Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Scientific Reports, 2021, 11, 19634.	3.3	6
288	Pharmacological Poly (ADP-Ribose) Polymerase Inhibitors Decrease Mycobacterium tuberculosis Survival in Human Macrophages. Frontiers in Immunology, 2021, 12, 712021.	4.8	6

#	Article	IF	CITATIONS
289	Transcriptomic signatures induced by the Ebola virus vaccine rVSVΔG-ZEBOV-GP in adult cohorts in Europe, Africa, and North America: a molecular biomarker study. Lancet Microbe, The, 2022, 3, e113-e123.	7.3	6
290	Pyruvate Dehydrogenase Kinase Inhibitor Dichloroacetate Improves Host Control of Salmonella enterica Serovar Typhimurium Infection in Human Macrophages. Frontiers in Immunology, 2021, 12, 739938.	4.8	5
291	HIV Skews a Balanced Mtb-Specific Th17 Response in Latent Tuberculosis Subjects to a Pro-inflammatory Profile Independent of Viral Load. Cell Reports, 2020, 33, 108451.	6.4	5
292	Recombinant BCC-LTAK63 Vaccine Candidate for Tuberculosis Induces an Inflammatory Profile in Human Macrophages. Vaccines, 2022, 10, 831.	4.4	5
293	Evaluation of the high-pressure extrusion technique as a method for sizing plasmid DNA-containing cationic liposomes. Journal of Liposome Research, 2011, 21, 286-295.	3.3	4
294	TRANSVAC workshop on standardisation and harmonisation of analytical platforms for HIV, TB and malaria vaccines: †How can big data help?'. Vaccine, 2014, 32, 4365-4368.	3.8	4
295	South Asian men have lower expression of IFN signalling genes in white adipose tissue and skeletal muscle compared with white men. Diabetologia, 2017, 60, 2525-2528.	6.3	4
296	Stratification of COVID-19 patients based on quantitative immune-related gene expression in whole blood. Molecular Immunology, 2022, 145, 17-26.	2.2	4
297	The In Vivo Transcriptomic Blueprint of Mycobacterium tuberculosis in the Lung. Frontiers in Immunology, 2021, 12, 763364.	4.8	4
298	Singleâ€Cell Mechanical Characterization of Human Macrophages. Advanced NanoBiomed Research, 2022, 2, .	3.6	4
299	Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
300	Detection of Mycobacterium leprae infection employing a combinatorial approach of anti-45 kDa and modified anti-PGL-I antibody detection assays. Journal of Medical Microbiology, 2007, 56, 1129-1130.	1.8	2
301	Serological heterogeneity against various Mycobacterium leprae antigens and its use in serodiagnosis of leprosy patients. Journal of Medical Microbiology, 2007, 56, 1259-1261.	1.8	2
302	Big Data in Vaccinology: Introduction and section summaries. Vaccine, 2015, 33, 5237-5240.	3.8	2
303	Quantitative Rapid Test for Detection and Monitoring of Active Pulmonary Tuberculosis in Nonhuman Primates. Biology, 2021, 10, 1260.	2.8	2
304	Assessment of Cross-Reactivity between <i>Mycobacterium bovis</i> and <i>M. kansasii</i> ESAT-6 and CFP-10 at the T-Cell Epitope Level. Vaccine Journal, 2007, 14, 1536-1536.	3.1	1
305	Trends in diagnostic methods and treatment of latent tuberculosis infection in a tertiary care center from 2000 to 2017. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1329-1337.	2.9	1
306	ALLORECOGNITION OF ARTIFICIAL NERVE GUIDES FILLED WITH HUMAN SCHWANN CELLS : An In Vitro Pilot Study. Transplantation, 2000, 69, 455.	1.0	1

#	ARTICLE	IF	CITATIONS
307	Leprosy bacillus triggers the wrong cells. International Journal of Leprosy and Other Mycobacterial Diseases, 2005, 73, 208-10.	0.3	1
308	Host Transcriptional Signatures Predict Etiology in Community-Acquired Pneumonia: Potential Antibiotic Stewardship Tools. Biomarker Insights, 2022, 17, 117727192210991.	2.5	1
309	Correlates of vaccine adjuvanticity, vaccine activity, protective immunity and disease in human infectious disease and cancer. Seminars in Immunology, 2018, 39, 1-3.	5.6	0
310	Conventional and Unconventional Lymphocytes in Immunity Against Mycobacterium tuberculosis. , 2021, , 133-168.		0