
X William Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8955198/publications.pdf Version: 2024-02-01

Χ \λ/π μανά Υλ

#	Article	IF	CITATIONS
1	Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice. Neuron, 2022, 110, 1173-1192.e7.	8.1	30
2	Group dynamics goes awry: PolyQ-expanded huntingtin gains unwanted partners. Cell Systems, 2022, 13, 268-270.	6.2	1
3	PIAS1 modulates striatal transcription, DNA damage repair, and SUMOylation with relevance to Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
4	Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci. ELife, 2021, 10, .	6.0	45
5	CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease. Science Translational Medicine, 2021, 13, eabe7104.	12.4	14
6	IO3â€CPEB alteration and aberrant transcriptome-polyadenylation unveil a treatable vitamin B1 deficiency in huntington's disease. , 2021, , .		0
7	Morphological diversity of single neurons in molecularly defined cell types. Nature, 2021, 598, 174-181.	27.8	180
8	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
9	Cellular anatomy of the mouse primary motor cortex. Nature, 2021, 598, 159-166.	27.8	117
10	The mouse cortico–basal ganglia–thalamic network. Nature, 2021, 598, 188-194.	27.8	126
11	Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice. Neuron, 2020, 108, 111-127.e6.	8.1	37
12	DNA methylation study of Huntington's disease and motor progression in patients and in animal models. Nature Communications, 2020, 11, 4529.	12.8	45
13	Disease-related Huntingtin seeding activities in cerebrospinal fluids of Huntington's disease patients. Scientific Reports, 2020, 10, 20295.	3.3	10
14	Huntington's Disease: Genome-wide Neuroprotection Screening Goes Viral. Neuron, 2020, 106, 4-6.	8.1	1
15	Dosage sensitivity intolerance of VIPR2 microduplication is disease causative to manifest schizophrenia-like phenotypes in a novel BAC transgenic mouse model. Molecular Psychiatry, 2019, 24, 1884-1901.	7.9	14
16	Precise segmentation of densely interweaving neuron clusters using G-Cut. Nature Communications, 2019, 10, 1549.	12.8	28
17	Huntington Disease's Glial Progenitor Cells Hit the Pause Button in the Mouse Brain. Cell Stem Cell, 2019, 24, 3-4.	11.1	14
18	Clinical and Genetic Profiles in Chinese Patients with Huntington's Disease: A Ten-year Multicenter		16

Study in China. , 2019, 10, 1003.

X WILLIAM YANG

#	Article	IF	CITATIONS
19	Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer's Disease Models. Neuron, 2018, 97, 1032-1048.e5.	8.1	246
20	Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nature Neuroscience, 2018, 21, 341-352.	14.8	186
21	Molecular insights into cortico-striatal miscommunications in Huntington's disease. Current Opinion in Neurobiology, 2018, 48, 79-89.	4.2	43
22	MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice. PLoS ONE, 2018, 13, e0190550.	2.5	39
23	Huntington's Disease: Nuclear Gatekeepers Under Attack. Neuron, 2017, 94, 1-4.	8.1	20
24	Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control. Cell, 2017, 171, 918-933.e20.	28.9	245
25	Genetically-directed Sparse Neuronal Labeling in BAC Transgenic Mice through Mononucleotide Repeat Frameshift. Scientific Reports, 2017, 7, 43915.	3.3	23
26	A novel humanized mouse model of Huntington disease for preclinical development of therapeutics targeting mutant huntingtin alleles. Human Molecular Genetics, 2017, 26, ddx021.	2.9	37
27	Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging, 2016, 8, 1485-1512.	3.1	192
28	Life and death rest on a bivalent chromatin state. Nature Neuroscience, 2016, 19, 1271-1273.	14.8	4
29	P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. Journal of Neuroscience, 2016, 36, 8902-8920.	3.6	47
30	The mouse cortico-striatal projectome. Nature Neuroscience, 2016, 19, 1100-1114.	14.8	412
31	Enhanced mitochondrial biogenesis ameliorates disease phenotype in a full-length mouse model of Huntington's disease. Human Molecular Genetics, 2016, 25, 2269-2282.	2.9	35
32	Integrated genomics and proteomics define huntingtin CAG length–dependent networks in mice. Nature Neuroscience, 2016, 19, 623-633.	14.8	342
33	Serine 421 regulates mutant huntingtin toxicity and clearance in mice. Journal of Clinical Investigation, 2016, 126, 3585-3597.	8.2	44
34	The N17 domain mitigates nuclear toxicity in a novel zebrafish Huntington's disease model. Molecular Neurodegeneration, 2015, 10, 67.	10.8	44
35	Probing the stress and depression circuits with a disease gene. ELife, 2015, 4, .	6.0	3
36	Exogenous and evoked oxytocin restores social behavior in the <i>Cntnap2</i> mouse model of autism. Science Translational Medicine, 2015, 7, 271ra8.	12.4	308

X WILLIAM YANG

#	Article	IF	CITATIONS
37	N17 Modifies Mutant Huntingtin Nuclear Pathogenesis and Severity of Disease in HD BAC Transgenic Mice. Neuron, 2015, 85, 726-741.	8.1	66
38	Cortical Efferents Lacking Mutant huntingtin Improve Striatal Neuronal Activity and Behavior in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2015, 35, 4440-4451.	3.6	58
39	Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease. Nature Medicine, 2014, 20, 536-541.	30.7	177
40	Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Science Translational Medicine, 2014, 6, 268ra178.	12.4	103
41	Conditions and Constraints for Astrocyte Calcium Signaling in the Hippocampal Mossy Fiber Pathway. Neuron, 2014, 82, 413-429.	8.1	206
42	Targeted expression of μ-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward. Nature Neuroscience, 2014, 17, 254-261.	14.8	118
43	CLEARance wars: PolyQ strikes back. Nature Neuroscience, 2014, 17, 1140-1142.	14.8	3
44	Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis. FEBS Journal, 2013, 280, 4382-4394.	4.7	53
45	Dangerous duet: LRRK2 and α-synuclein jam at CMA. Nature Neuroscience, 2013, 16, 375-377.	14.8	23
46	A fully humanized transgenic mouse model of Huntington disease. Human Molecular Genetics, 2013, 22, 18-34.	2.9	93
47	An Independent Study of the Preclinical Efficacy of C2-8 in the R6/2 Transgenic Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 443-451.	1.9	9
48	A Novel BACHD Transgenic Rat Exhibits Characteristic Neuropathological Features of Huntington Disease. Journal of Neuroscience, 2012, 32, 15426-15438.	3.6	89
49	Caspase-6 Activity in a BACHD Mouse Modulates Steady-State Levels of Mutant Huntingtin Protein But Is Not Necessary for Production of a 586 Amino Acid Proteolytic Fragment. Journal of Neuroscience, 2012, 32, 7454-7465.	3.6	46
50	Network Organization of the Huntingtin Proteomic Interactome in Mammalian Brain. Neuron, 2012, 75, 41-57.	8.1	262
51	"Huntingtin Holidayâ€: Progress toward an Antisense Therapy for Huntington's Disease. Neuron, 2012, 74, 964-966.	8.1	52
52	Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington's disease. Frontiers in Biology, 2012, 7, 459-476.	0.7	0
53	Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nature Chemical Biology, 2011, 7, 925-934.	8.0	178
54	An Antisense CAG Repeat Transcript at JPH3 Locus Mediates Expanded Polyglutamine Protein Toxicity in Huntington's Disease-like 2 Mice. Neuron, 2011, 70, 427-440.	8.1	127

X WILLIAM YANG

#	Article	IF	CITATIONS
55	Molecular and cellular basis of obsessive–compulsive disorder-like behaviors: emerging view from mouse models. Current Opinion in Neurology, 2011, 24, 114-118.	3.6	32
56	Differential Electrophysiological Changes in Striatal Output Neurons in Huntington's Disease. Journal of Neuroscience, 2011, 31, 1170-1182.	3.6	125
57	Deletion of Astroglial Dicer Causes Non-Cell-Autonomous Neuronal Dysfunction and Degeneration. Journal of Neuroscience, 2011, 31, 8306-8319.	3.6	154
58	Flipping a switch on huntingtin. Nature Chemical Biology, 2011, 7, 412-414.	8.0	18
59	Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids. European Journal of Neuroscience, 2010, 31, 14-28.	2.6	87
60	Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Human Molecular Genetics, 2010, 19, 1528-1538.	2.9	100
61	Cleavage at the 586 Amino Acid Caspase-6 Site in Mutant huntingtin Influences Caspase-6 Activation <i>In Vivo</i> . Journal of Neuroscience, 2010, 30, 15019-15029.	3.6	94
62	Bacterial Artificial Chromosome Transgenic Mice Expressing a Truncated Mutant Parkin Exhibit Age-Dependent Hypokinetic Motor Deficits, Dopaminergic Neuron Degeneration, and Accumulation of Proteinase K-Resistant α-Synuclein. Journal of Neuroscience, 2009, 29, 1962-1976.	3.6	168
63	DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Human Molecular Genetics, 2009, 18, 2875-2888.	2.9	169
64	Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models. Neurobiology of Disease, 2009, 35, 319-336.	4.4	281
65	Serines 13 and 16 Are Critical Determinants of Full-Length Human Mutant Huntingtin Induced Disease Pathogenesis in HD Mice. Neuron, 2009, 64, 828-840.	8.1	288
66	Pivotal role of early Bâ€cell factor 1 in development of striatonigral medium spiny neurons in the matrix compartment. Journal of Neuroscience Research, 2008, 86, 2134-2146.	2.9	75
67	Full-Length Human Mutant Huntingtin with a Stable Polyglutamine Repeat Can Elicit Progressive and Selective Neuropathogenesis in BACHD Mice. Journal of Neuroscience, 2008, 28, 6182-6195.	3.6	558
68	Genetic control of instrumental conditioning by striatopallidal neuron–specific S1P receptor Gpr6. Nature Neuroscience, 2007, 10, 1395-1397.	14.8	80
69	FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nature Neuroscience, 2006, 9, 443-452.	14.8	396
70	Pathological Cell-Cell Interactions Elicited by a Neuropathogenic Form of Mutant Huntingtin Contribute to Cortical Pathogenesis in HD Mice. Neuron, 2005, 46, 433-444.	8.1	222
71	An Overview on the Generation of BAC Transgenic Mice for Neuroscience Research. Current Protocols in Neuroscience, 2005, 31, Unit 5.20.	2.6	48