
Patrick Mäder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/895468/publications.pdf Version: 2024-02-01

DATRICK MÃRER

#	Article	IF	CITATIONS
1	SVDistNet: Self-Supervised Near-Field Distance Estimation on Surround View Fisheye Cameras. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10252-10261.	8.0	13
2	Synaptic Scaling—An Artificial Neural Network Regularization Inspired by Nature. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 3094-3108.	11.3	5
3	Deep security analysis of program code. Empirical Software Engineering, 2022, 27, 1.	3.9	11
4	An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals. Plants People Planet, 2022, 4, 110-121.	3.3	11
5	Propagating frugal user feedback through closeness of code dependencies to improve IR-based traceability recovery. Empirical Software Engineering, 2022, 27, 1.	3.9	3
6	Deep Learning in Plant Phenological Research: A Systematic Literature Review. Frontiers in Plant Science, 2022, 13, 805738.	3.6	23
7	Direct data-driven forecast of local turbulent heat flux in Rayleigh–Bénard convection. Physics of Fluids, 2022, 34, .	4.0	12
8	SEOSS-Queries - a software engineering dataset for text-to-SQL and question answering tasks. Data in Brief, 2022, 42, 108211.	1.0	1
9	The potential of multispectral imaging flow cytometry for environmental monitoring. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 782-799.	1.5	4
10	Reactive Auto-Completion of Modeling Activities. IEEE Transactions on Software Engineering, 2021, 47, 1431-1451.	5.6	5
11	Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytologist, 2021, 229, 593-606.	7.3	42
12	SynDistNet: Self-Supervised Monocular Fisheye Camera Distance Estimation Synergized with Semantic Segmentation for Autonomous Driving. , 2021, , .		37
13	OmniDet: Surround View Cameras Based Multi-Task Visual Perception Network for Autonomous Driving. IEEE Robotics and Automation Letters, 2021, 6, 2830-2837.	5.1	45
14	The Flora Incognita app – Interactive plant species identification. Methods in Ecology and Evolution, 2021, 12, 1335-1342.	5.2	41
15	Crowdâ€sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography, 2021, 44, 1131-1142.	4.5	28
16	Defocus particle tracking: a comparison of methods based on model functions, cross-correlation, and neural networks. Measurement Science and Technology, 2021, 32, 094011.	2.6	16
17	Development Methodologies for Safety Critical Machine Learning Applications in the Automotive Domain: A Survey. , 2021, , .		12
18	SmartPIV: flow velocity estimates by smartphones for education and field studies. Experiments in Fluids, 2021, 62, 1.	2.4	9

#	Article	IF	CITATIONS
19	Multi-view classification with convolutional neural networks. PLoS ONE, 2021, 16, e0245230.	2.5	74
20	StickyPillars: Robust and Efficient Feature Matching on Point Clouds using Graph Neural Networks. , 2021, , .		38
21	Image-Based Automated Recognition of 31 Poaceae Species: The Most Relevant Perspectives. Frontiers in Plant Science, 2021, 12, 804140.	3.6	10
22	A definition-by-example approach and visual language for activity patterns in engineering disciplines. PLoS ONE, 2020, 15, e0226877.	2.5	0
23	SpojitR: Intelligently Link Development Artifacts. , 2020, , .		2
24	FisheyeDistanceNet: Self-Supervised Scale-Aware Distance Estimation using Monocular Fisheye Camera for Autonomous Driving. , 2020, , .		33
25	Flora Capture: a citizen science application for collecting structured plant observations. BMC Bioinformatics, 2020, 21, 576.	2.6	19
26	On the use of a cascaded convolutional neural network for three-dimensional flow measurements using astigmatic PTV. Measurement Science and Technology, 2020, 31, 074015.	2.6	19
27	Graph Based Mining of Code Change Patterns from Version Control Commits. IEEE Transactions on Software Engineering, 2020, , 1-1.	5.6	3
28	Request for comments. , 2020, , .		5
29	UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a Generic Framework for Handling Common Camera Distortion Models. , 2020, , .		21
30	Efficiently Annotating Object Images with Absolute Size Information Using Mobile Devices. International Journal of Computer Vision, 2019, 127, 207-224.	15.6	10
31	Structured information in bug report descriptions—influence on IR-based bug localization and developers. Software Quality Journal, 2019, 27, 1315-1337.	2.2	5
32	The SEOSS 33 dataset — Requirements, bug reports, code history, and trace links for entire projects. Data in Brief, 2019, 25, 104005.	1.0	15
33	Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods, 2019, 15, 77.	4.3	42
34	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery. , 2019, , .		8
35	Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics, 2019, 20, 4.	2.6	40
36	Selecting Open Source Projects for Traceability Case Studies. Lecture Notes in Computer Science, 2019, , 229-242.	1.3	2

4

#	Article	IF	CITATIONS
37	Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Archives of Computational Methods in Engineering, 2018, 25, 507-543.	10.2	247
38	Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecology, 2018, 18, 51.	3.0	46
39	Use of trace link types in issue tracking systems. , 2018, , .		5
40	Traceability in the wild. , 2018, , .		65
41	Influence of Structured Information in Bug Report Descriptions on IR-Based Bug Localization. , 2018, , .		3
42	DLR secure software engineering. , 2018, , .		2
43	Automated plant species identification—Trends and future directions. PLoS Computational Biology, 2018, 14, e1005993.	3.2	189
44	Analyzing requirements and traceability information to improve bug localization. , 2018, , .		33
45	Recommending plant taxa for supporting on-site species identification. BMC Bioinformatics, 2018, 19, 190.	2.6	332
46	Machine learning for image based species identification. Methods in Ecology and Evolution, 2018, 9, 2216-2225.	5.2	267
47	Empirical studies in software and systems traceability. Empirical Software Engineering, 2017, 22, 963-966.	3.9	7
48	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery. , 2017, , .		21
49	Preventing Defects: The Impact of Requirements Traceability Completeness on Software Quality. IEEE Transactions on Software Engineering, 2017, 43, 777-797.	5.6	59
50	Acquiring and preprocessing leaf images for automated plant identification: understanding the tradeoff between effort and information gain. Plant Methods, 2017, 13, 97.	4.3	80
51	RapMOD — In Situ Auto-Completion for Graphical Models. , 2017, , .		2
52	The IlmSeven Dataset. , 2017, , .		11
53	Plant species classification using flower images—A comparative study of local feature representations. PLoS ONE, 2017, 12, e0170629.	2.5	69

54 Continuous assessment of software traceability. , 2016, , .

4

#	Article	IF	CITATIONS
55	How Firms Adapt and Interact in Open Source Ecosystems: Analyzing Stakeholder Influence and Collaboration Patterns. Lecture Notes in Computer Science, 2016, , 63-81.	1.3	12
56	Can method data dependencies support the assessment of traceability between requirements and source code?. Journal of Software: Evolution and Process, 2015, 27, 838-866.	1.6	17
57	A quality model for the systematic assessment of requirements traceability. , 2015, , .		15
58	Estimating the Implementation Risk of Requirements in Agile Software Development Projects with Traceability Metrics. Lecture Notes in Computer Science, 2015, , 81-97.	1.3	9
59	From Raw Project Data to Business Intelligence. IEEE Software, 2015, 32, 22-25.	1.8	5
60	Do developers benefit from requirements traceability when evolving and maintaining a software system?. Empirical Software Engineering, 2015, 20, 413-441.	3.9	64
61	Software traceability: trends and future directions. , 2014, , .		197
62	A Customizable Approach to Design Patterns Recognition Based on Feature Types. Arabian Journal for Science and Engineering, 2014, 39, 8851-8873.	1.1	10
63	Pattern-based auto-completion of UML modeling activities. , 2014, , .		14
64	Achieving lightweight trustworthy traceability. , 2014, , .		12
65	Mind the gap: assessing the conformance of software traceability to relevant guidelines. , 2014, , .		50
66	Strategic Traceability for Safety-Critical Projects. IEEE Software, 2013, 30, 58-66.	1.8	77
67	A visual language for modeling and executing traceability queries. Software and Systems Modeling, 2013, 12, 537-553.	2.7	21
68	Towards feature-aware retrieval of refinement traces. , 2013, , .		12
69	A Survey on Usage Scenarios for Requirements Traceability in Practice. Lecture Notes in Computer Science, 2013, , 158-173.	1.3	42
70	An empirical study on project-specific traceability strategies. , 2013, , .		30
71	A domain-centric approach for recommending architectural tactics to satisfy quality concerns. , 2013, , .		9
72	Requirements Traceability across Organizational Boundaries - A Survey and Taxonomy. Lecture Notes in Computer Science, 2013, , 125-140.	1.3	16

#	Article	IF	CITATIONS
73	Recommending Auto-completions for Software Modeling Activities. Lecture Notes in Computer Science, 2013, , 170-186.	1.3	13
74	Acquiring Tool Support for Traceability. , 2012, , 43-68.		11
75	Do data dependencies in source code complement call dependencies for understanding requirements traceability?. , 2012, , .		8
76	Variability points and design pattern usage in architectural tactics. , 2012, , .		15
77	Assessing the effect of requirements traceability for software maintenance. , 2012, , .		36
78	Breaking the big-bang practice of traceability: Pushing timely trace recommendations to project stakeholders. , 2012, , .		11
79	Towards automated traceability maintenance. Journal of Systems and Software, 2012, 85, 2205-2227.	4.5	54
80	Traceability Fundamentals. , 2012, , 3-22.		63
81	Ready-to-Use Traceability on Evolving Projects. , 2012, , 173-194.		6
82	Flexible design pattern detection based on feature types. , 2011, , .		24
83	Evaluation of design pattern recovery tools. Procedia Computer Science, 2011, 3, 813-819.	2.0	7
84	Do software engineers benefit from source code navigation with traceability? — An experiment in software change management. , 2011, , .		11
85	Fine-Tuning Model Transformation: Change Propagation in Context of Consistency, Completeness, and Human Guidance. Lecture Notes in Computer Science, 2011, , 1-14.	1.3	3
86	A Visual Traceability Modeling Language. Lecture Notes in Computer Science, 2010, , 226-240.	1.3	16
87	Design pattern recovery based on annotations. Advances in Engineering Software, 2010, 41, 519-526.	3.8	34
88	A Taxonomy and Visual Notation for Modeling Globally Distributed Requirements Engineering Projects. , 2010, , .		16
89	Getting back to basics: Promoting the use of a traceability information model in practice. , 2009, , .		43

90 How to Select a Requirements Management Tool: Initial Steps. , 2009, , .

5

#	Article	IF	CITATIONS
91	Semi-automated traceability maintenance: An architectural overview of traceMaintainer. , 2009, , .		4
92	Motivation Matters in the Traceability Trenches. , 2009, , .		52
93	Enabling Automated Traceability Maintenance through the Upkeep of Traceability Relations. Lecture Notes in Computer Science, 2009, , 174-189.	1.3	23
94	Rule-Based Maintenance of Post-Requirements Traceability Relations. , 2008, , .		25
95	Enabling Automated Traceability Maintenance by Recognizing Development Activities Applied to Models. , 2008, , .		21
96	traceMaintainer - Automated Traceability Maintenance. , 2008, , .		13
97	Customizing Traceability Links for the Unified Process. Lecture Notes in Computer Science, 2007, , 53-71.	1.3	5