Ling Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954539/publications.pdf Version: 2024-02-01

LINC HONC

#	Article	IF	CITATIONS
1	Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515.	5.8	1,431
2	Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.	11.1	1,407
3	Ecoâ€Compatible Solventâ€Processed Organic Photovoltaic Cells with Over 16% Efficiency. Advanced Materials, 2019, 31, e1903441.	11.1	445
4	Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 2020, 7, 1239-1246.	4.6	443
5	Achieving Over 15% Efficiency in Organic Photovoltaic Cells via Copolymer Design. Advanced Materials, 2019, 31, e1808356.	11.1	388
6	14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference. Journal of the American Chemical Society, 2019, 141, 7743-7750.	6.6	379
7	Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells. Advanced Materials, 2019, 31, e1902302.	11.1	364
8	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360
9	Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nature Communications, 2018, 9, 4645.	5.8	205
10	Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Advanced Materials, 2018, 30, 1703005.	11.1	182
11	Allâ€5olutionâ€Processed Metalâ€Oxideâ€Free Flexible Organic Solar Cells with Over 10% Efficiency. Advanced Materials, 2018, 30, e1800075.	11.1	165
12	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie - International Edition, 2020, 59, 9004-9010.	7.2	144
13	1 cm ² Organic Photovoltaic Cells for Indoor Application with over 20% Efficiency. Advanced Materials, 2019, 31, e1904512.	11.1	140
14	Selenopheno[3,2- <i>b</i>]thiophene-Based Narrow-Bandgap Nonfullerene Acceptor Enabling 13.3% Efficiency for Organic Solar Cells with Thickness-Insensitive Feature. ACS Energy Letters, 2018, 3, 2967-2976.	8.8	139
15	18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction. Advanced Materials, 2021, 33, e2103091.	11.1	136
16	Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges. ACS Applied Materials & Interfaces, 2020, 12, 38815-38828.	4.0	126
17	A Thiadiazoleâ€Based Conjugated Polymer with Ultradeep HOMO Level and Strong Electroluminescence Enables 18.6% Efficiency in Organic Solar Cell. Advanced Energy Materials, 2021, 11, 2101705.	10.2	125
18	Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis. Advanced Energy Materials, 2020, 10, 2000136.	10.2	120

Ling Hong

#	Article	IF	CITATIONS
19	17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.	15.6	116
20	Enhanced ï€â€"Ï€ Interactions of Nonfullerene Acceptors by Volatilizable Solid Additives in Efficient Polymer Solar Cells. Advanced Materials, 2019, 31, e1900477.	11.1	99
21	Solvent Annealing Enables 15.39% Efficiency Allâ€Smallâ€Molecule Solar Cells through Improved Molecule Interconnection and Reduced Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2100800.	10.2	86
22	Crumple Durable Ultraflexible Organic Solar Cells with an Excellent Powerâ€perâ€Weight Performance. Advanced Functional Materials, 2021, 31, 2102694.	7.8	78
23	Over 14% efficiency nonfullerene all-small-molecule organic solar cells enabled by improving the ordering of molecular donors <i>via</i> side-chain engineering. Journal of Materials Chemistry A, 2020, 8, 7405-7411.	5.2	69
24	A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells. Journal of Materials Chemistry A, 2020, 8, 1131-1137.	5.2	65
25	Quadrupole Moment Induced Morphology Control Via a Highly Volatile Small Molecule in Efficient Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2010535.	7.8	55
26	Multiâ€Functional Solid Additive Induced Favorable Vertical Phase Separation and Ordered Molecular Packing for Highly Efficient Layerâ€byâ€Layer Organic Solar Cells. Small, 2021, 17, e2103497.	5.2	49
27	Multi-component non-fullerene acceptors with tunable bandgap structures for efficient organic solar cells. Journal of Materials Chemistry A, 2018, 6, 23644-23649.	5.2	47
28	Bendable and foldable flexible organic solar cells based on Ag nanowire films with 10.30% efficiency. Journal of Materials Chemistry A, 2019, 7, 3737-3744.	5.2	47
29	Recent advances in high-efficiency organic solar cells fabricated by eco-compatible solvents at relatively large-area scale. APL Materials, 2020, 8, .	2.2	45
30	Highly efficient non-fullerene polymer solar cells enabled by novel non-conjugated small-molecule cathode interlayers. Journal of Materials Chemistry A, 2018, 6, 6327-6334.	5.2	42
31	Over 14% Efficiency Folding-Flexible ITO-free Organic Solar Cells Enabled by Eco-friendly Acid-Processed Electrodes. IScience, 2020, 23, 100981.	1.9	40
32	Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216Âcm ² . Progress in Photovoltaics: Research and Applications, 2019, 27, 264-274.	4.4	34
33	Simultaneous Improvement of Efficiency and Stability of Organic Photovoltaic Cells by using a Crossâ€Linkable Fullerene Derivative. Small, 2021, 17, e2101133.	5.2	34
34	Organic photovoltaic cells with high efficiencies for both indoor and outdoor applications. Materials Chemistry Frontiers, 2021, 5, 893-900.	3.2	32
35	A novel polymer donor based on dithieno[2,3- <i>d</i> :2′,3′- <i>d</i> ′′]benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene for highly eff polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 2646-2652.	icie st 2	26
36	Nonâ€Doped Skyâ€Blue OLEDs Based on Simple Structured AIE Emitters with High Efficiencies at Low Driven Voltages. Chemistry - an Asian Journal, 2017, 12, 2189-2196.	1.7	24

Ling Hong

#	Article	IF	CITATIONS
37	Enhancing the Photovoltaic Performance of Nonfullerene Acceptors via Conjugated Rotatable End Groups. Advanced Energy Materials, 2018, 8, 1802131.	10.2	24
38	Investigating the Trade-Off between Device Performance and Energy Loss in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 29124-29131.	4.0	24
39	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie, 2020, 132, 9089-9095.	1.6	24
40	Highly fluorescent anthracene derivative as a non-fullerene acceptor in OSCs with small non-radiative energy loss of 0.22ÂeV and high PCEs of over 13%. Journal of Materials Chemistry A, 2019, 7, 10212-10216.	5.2	22
41	Highly efficient polymer solar cells using a non-conjugated small-molecule zwitterion with enhancement of electron transfer and collection. Journal of Materials Chemistry A, 2016, 4, 14944-14948.	5.2	21
42	Multifunctional emitters for efficient simplified non-doped blueish green organic light emitting devices with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5, 6527-6536.	2.7	21
43	Efficient Organic Solar Cells with a High Openâ€Circuit Voltage of 1.34 V. Chinese Journal of Chemistry, 2019, 37, 1153-1157.	2.6	20
44	Highly efficient polymer solar cells employing natural chlorophyllin as a cathode interfacial layer. Journal of Materials Chemistry A, 2018, 6, 464-468.	5.2	19
45	Chlorinated Carbonâ€Bridged and Siliconâ€Bridged Carbazoleâ€Based Nonfullerene Acceptors Manifest Synergistic Enhancement in Ternary Organic Solar Cell with Efficiency over 15%. Solar Rrl, 2020, 4, 2000357.	3.1	19
46	Understanding the Effect of Sequential Deposition Processing for High-Efficient Organic Photovoltaics to Harvest Sunlight and Artificial Light. ACS Applied Materials & Interfaces, 2021, 13, 20405-20416.	4.0	19
47	Efficient Exciton Dissociation Enabled by the End Group Modification in Non-Fullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 7691-7698.	1.5	18
48	High-Performance Polymer Solar Cells Employing Rhodamines as Cathode Interfacial Layers. ACS Applied Materials & Interfaces, 2017, 9, 27083-27089.	4.0	17
49	TCNQ as a volatilizable morphology modulator enables enhanced performance in non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 44-49.	2.7	16
50	Significant influence of halogenation on the energy levels and molecular configurations of polymers in DTBDT-based polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1244-1252.	3.2	15
51	A Methodological Study on Tuning the Thermally Activated Delayed Fluorescent Performance by Molecular Constitution in Acridine–Benzophenone Derivatives. Chemistry - an Asian Journal, 2018, 13, 1187-1191.	1.7	12
52	Highly Efficient Non-Fullerene Organic Solar Cells Using 4,8-Bis((2-ethylhexyl)oxy)benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Based Polymers as Additives. Macromolecules, 2018, 51, 4032-4039.	2.2	9
53	Significant Efficiency Improvement Enabled by CdSe/ZnS Quantum Dot Modifier in Organic Solar Cells. Solar Rrl, 2019, 3, 1900117.	3.1	9
54	A Carbonylated Terthiophene–Based Twisted Polymer for Efficient Ternary Polymer Solar Cells. Macromolecular Rapid Communications, 2019, 40, e1900246.	2.0	7

	UN LIN	Ling Hong		
#	Article	IF	CITATIONS	
55	Highly efficient ultraviolet light-emitting organosoluble polyimide. RSC Advances, 2016, 6, 70008-7001	1. 1.7	2	