
Susanne S Renner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8954355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The International Phenological Garden network (1959 to 2021): its 131 gardens, cloned study species, data archiving, and future. International Journal of Biometeorology, 2022, 66, 35-43.	3.0	9
2	Dead-End Hybridization in Walnut Trees Revealed by Large-Scale Genomic Sequence Data. Molecular Biology and Evolution, 2022, 39, .	8.9	21
3	Statistical evidence that honeybees competitively reduced wild bee abundance in the Munich Botanic Garden in 2020 compared to 2019. Oecologia, 2022, 198, 343-344.	2.0	0
4	Trees growing in Eastern North America experience higher autumn solar irradiation than their European relatives, but is nitrogen limitation another factor explaining anthocyaninâ€red autumn leaves?. Journal of Evolutionary Biology, 2022, 35, 183-188.	1.7	3
5	Sex determination and sex chromosome evolution in land plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210210.	4.0	6
6	The evolution of huge Y chromosomes in <i>Coccinia grandis</i> and its sister, <i>Coccinia schimperi</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210294.	4.0	5
7	In memoriam Professor Dr.ÂDieter Podlech. Taxon, 2022, 71, 491-492.	0.7	0
8	Plant Evolution and Systematics 1982–2022: Changing Questions and Methods as Seen by a Participant. Progress in Botany Fortschritte Der Botanik, 2022, , .	0.3	0
9	Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication. Genome Biology, 2022, 23, .	8.8	10
10	Centromere organization and UU/V sex chromosome behavior in a liverwort. Plant Journal, 2021, 106, 133-141.	5.7	8
11	High honeybee abundances reduce wild bee abundances on flowers in the city of Munich. Oecologia, 2021, 195, 825-831.	2.0	18
12	Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nature Plants, 2021, 7, 392-402.	9.3	64
13	Response to Comment on "Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees― Science, 2021, 371, .	12.6	3
14	Climate data and flowering times for 450 species from 1844 deepen the record of phenological change in southern Germany. American Journal of Botany, 2021, 108, 711-717.	1.7	6
15	(069) Recommendation for adding photographs of type specimens to the protologues of new names of taxa at the rank of species or below. Taxon, 2021, 70, 452-453.	0.7	1
16	How changes in spring and autumn phenology translate into growthâ€experimental evidence of asymmetric effects. Journal of Ecology, 2021, 109, 2717-2728.	4.0	10
17	A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
18	An illustrated step-by-step protocol for investigating liverwort chromosomes. Bryophyte Diversity and Evolution, 2021, 43, .	1.1	1

#	Article	IF	CITATIONS
19	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	8.9	14
20	iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa, 2021, 6, .	3.8	47
21	Threeâ€dimensional Xâ€rayâ€computed tomography of 3300―to 6000â€yearâ€old <i>Citrullus</i> seeds from and Egypt compared to extant seeds throws doubts on species assignments. Plants People Planet, 2021, 3, 694-702.	Libya 3.3	3
22	Evolution: How Flowers Switch from Nectar to Oil asÂaÂPollinator Reward. Current Biology, 2021, 31, R18-R20.	3.9	1
23	Genomeâ€wide transcriptome signatures of antâ€farmed <i>Squamellaria</i> epiphytes reveal key functions in a unique symbiosis. Ecology and Evolution, 2021, 11, 15882-15895.	1.9	3
24	(093–096) Proposals to permit nuclear <scp>DNA</scp> sequences as nomenclatural types when preservation of specimens is not feasible. Taxon, 2021, 70, 1380-1381.	0.7	4
25	Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytologist, 2020, 226, 1240-1255.	7.3	134
26	Rising air humidity during spring does not trigger leafâ€out in temperate woody plants. New Phytologist, 2020, 225, 16-20.	7.3	3
27	Bitter gourd from Africa expanded to Southeast Asia and was domesticated there: A new insight from parallel studies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24630-24631.	7.1	3
28	Evidence for Dosage Compensation in Coccinia grandis, a Plant with a Highly Heteromorphic XY System. Genes, 2020, 11, 787.	2.4	12
29	Early evolution of Coriariaceae (Cucurbitales) in light of a new early Campanian (ca. 82 Mya) pollen record from Antarctica. Taxon, 2020, 69, 87-99.	0.7	7
30	Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science, 2020, 370, 1066-1071.	12.6	202
31	JOSEF BOGNER (1939–2020). Taxon, 2020, 69, 643-646.	0.7	1
32	The Evolution of Mutualistic Dependence. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 409-432.	8.3	78
33	Bee species decrease and increase between the 1990s and 2018 in large urban protected sites. Journal of Insect Conservation, 2020, 24, 637-642.	1.4	6
34	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	7.1	140
35	Further analysis of 1532 deciduous woody species from North America, Europe, and Asia supports continentalâ€scale differences in red autumn colouration. New Phytologist, 2020, 228, 814-815.	7.3	13
36	Leafâ€out in northern ecotypes of wideâ€ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Global Ecology and Biogeography, 2020, 29, 1065-1072.	5.8	33

#	Article	IF	CITATIONS
37	Data storage and data re-use in taxonomy—the need for improved storage and accessibility of heterogeneous data. Organisms Diversity and Evolution, 2020, 20, 1-8.	1.6	10
38	Different from tracheophytes, liverworts commonly have mixed 35S and 5S arrays. Annals of Botany, 2020, 125, 1057-1064.	2.9	8
39	Tradeoffs in the evolution of plant farming by ants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2535-2543.	7.1	8
40	Repositories for Taxonomic Data: Where We Are and What is Missing. Systematic Biology, 2020, 69, 1231-1253.	5.6	38
41	<i>Squamellaria</i> : Plants domesticated by ants. Plants People Planet, 2019, 1, 302-305.	3.3	4
42	Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. Oecologia, 2019, 189, 549-561.	2.0	39
43	The organization of nuclear ribosomal DNA in gnetophytes – physically separate and physically linked arrangements of 35S and 5S genes. A commentary on: â€~Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms'. Annals of Botany, 2019. 123. vi-vii.	2.9	1
44	Farming by ants remodels nutrient uptake in epiphytes. New Phytologist, 2019, 223, 2011-2023.	7.3	21
45	Phylogenomics Reveals an Ancient Hybrid Origin of the Persian Walnut. Molecular Biology and Evolution, 2019, 36, 2451-2461.	8.9	79
46	Sequential horizontal gene transfers from different hosts in a widespread Eurasian parasitic plant, <i>Cynomorium coccineum</i> . American Journal of Botany, 2019, 106, 679-689.	1.7	18
47	The occurrence of red and yellow autumn leaves explained by regional differences in insolation and temperature. New Phytologist, 2019, 224, 1464-1471.	7.3	40
48	Narrow habitat breadth and late-summer emergence increases extinction vulnerability in Central European bees. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190316.	2.6	24
49	Climate and symbioses with ants modulate leaf/stem scaling in epiphytes. Scientific Reports, 2019, 9, 2624.	3.3	2
50	Examining the support–supply and budâ€packing hypotheses for the increase in toothed leaf margins in northern deciduous floras. American Journal of Botany, 2019, 106, 1404-1411.	1.7	5
51	Susanne S. Renner. Current Biology, 2019, 29, R1290.	3.9	Ο
52	Increased autumn productivity permits temperate trees to compensate for spring frost damage. New Phytologist, 2019, 221, 789-795.	7.3	41
53	Deciphering the complex architecture of an herb using micro-computed X-ray tomography, with an illustrated discussion on architectural diversity of herbs. Botanical Journal of the Linnean Society, 2018, 186, 145-157.	1.6	3
54	Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie, 2018, 49, 307-313.	2.0	14

#	Article	IF	CITATIONS
55	A Winteraceae pollen tetrad from the early Paleocene of western Greenland, and the fossil record of Winteraceae in Laurasia and Gondwana. Journal of Biogeography, 2018, 45, 567-581.	3.0	15
56	The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172365.	2.6	21
57	Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to climate warming, not other parameters. Oecologia, 2018, 187, 701-706.	2.0	26
58	Plant fossils reveal major biomes occupied by the late Miocene Old-World Pikermian fauna. Nature Ecology and Evolution, 2018, 2, 1864-1870.	7.8	24
59	Climate Change and Phenological Mismatch in Trophic Interactions Among Plants, Insects, and Vertebrates. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 165-182.	8.3	376
60	Global warming reduces leaf-out and flowering synchrony among individuals. ELife, 2018, 7, .	6.0	54
61	Jochen Heinrichs March 14, 1969 – April 22, 2018. Cryptogamie, Bryologie, 2018, 39, 407-412.	0.2	Ο
62	Evolutionary flexibility in five hummingbird/plant mutualistic systems: testing temporal and geographic matching. Journal of Biogeography, 2017, 44, 1847-1855.	3.0	16
63	Spring predictability explains different leafâ€out strategies in the woody floras of North America, Europe and East Asia. Ecology Letters, 2017, 20, 452-460.	6.4	66
64	Recurrent breakdowns of mutualisms with ants in the neotropical ant-plant genus Cecropia (Urticaceae). Molecular Phylogenetics and Evolution, 2017, 111, 196-205.	2.7	18
65	Clock-dated phylogeny for 48% of the 700 species of Crotalaria (Fabaceae–Papilionoideae) resolves sections worldwide and implies conserved flower and leaf traits throughout its pantropical range. BMC Evolutionary Biology, 2017, 17, 61.	3.2	8
66	Partner abundance controls mutualism stability and the pace of morphological change over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3951-3956.	7.1	50
67	Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover. Chromosome Research, 2017, 25, 191-200.	2.2	22
68	The assembly of ant-farmed gardens: mutualism specialization following host broadening. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161759.	2.6	26
69	The interactions of ants with their biotic environment. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170013.	2.6	18
70	Innately shorter vegetation periods in North American species explain native–non-native phenological asymmetries. Nature Ecology and Evolution, 2017, 1, 1655-1660.	7.8	31
71	Long-spurred Angraecum orchids and long-tongued sphingid moths on Madagascar: a time frame for Darwin's predicted Xanthopan/Angraecum coevolution. Biological Journal of the Linnean Society, 2017, 122, 469-478.	1.6	13
72	The sex chromosomes of bryophytes: Recent insights, open questions, and reinvestigations of <i>Frullania dilatata</i> and <i>Plagiochila asplenioides</i> . Journal of Systematics and Evolution, 2017, 55, 333-339.	3.1	26

#	Article	IF	CITATIONS
73	Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. Annals of Botany, 2017, 120, 855-891.	2.9	53
74	Chromosome numbers, Sudanese wild forms, and classification of the watermelon genus <i>Citrullus</i> , with 50 names allocated to seven biological species. Taxon, 2017, 66, 1393-1405.	0.7	40
75	Coevolution with pollinating resin midges led to resin-filled nurseries in the androecia, gynoecia and tepals of Kadsura (Schisandraceae). Annals of Botany, 2017, 120, 653-664.	2.9	11
76	A valid name for the Xishuangbanna gourd, a cucumber with carotene-rich fruits. PhytoKeys, 2017, 85, 87-94.	1.0	9
77	Available data point to a 4â€kmâ€high Tibetan Plateau by 40ÂMa, but 100 molecularâ€clock papers have linked supposed recent uplift to young node ages. Journal of Biogeography, 2016, 43, 1479-1487.	3.0	176
78	Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales. Genome Biology and Evolution, 2016, 8, 2214-2230.	2.5	62
79	Partner choice through concealed floral sugar rewards evolved with the specialization of ant–plant mutualisms. New Phytologist, 2016, 211, 1358-1370.	7.3	29
80	Phylogeny and Evolution of the Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, 2016, , 13-23.	0.3	28
81	Two hAT transposon genes were transferred from Brassicaceae to broomrapes and are actively expressed in some recipients. Scientific Reports, 2016, 6, 30192.	3.3	12
82	Chromosome number reduction in the sister clade of <i>Carica papaya</i> with concomitant genome size doubling. American Journal of Botany, 2016, 103, 1082-1088.	1.7	26
83	Pathways for making unisexual flowers and unisexual plants:Moving beyond the "two mutations linked on one chromosome―model. American Journal of Botany, 2016, 103, 587-589.	1.7	56
84	A Return to Linnaeus's Focus on Diagnosis, Not Description: The Use of DNA Characters in the Formal Naming of Species. Systematic Biology, 2016, 65, 1085-1095.	5.6	99
85	East Asian Lobelioideae and ancient divergence of a giant rosette Lobelia in Himalayan Bhutan. Taxon, 2016, 65, 293-304.	0.7	14
86	The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. Journal of Systematics and Evolution, 2016, 54, 1-16.	3.1	72
87	Obligate plant farming by a specialized ant. Nature Plants, 2016, 2, 16181.	9.3	26
88	Analysis of transposable elements and organellar <scp>DNA</scp> in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant Journal, 2016, 88, 387-396.	5.7	44
89	Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 2016, 6, 1120-1123.	18.8	180
90	Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evolutionary Biology, 2016, 16, 248.	3.2	56

#	Article	IF	CITATIONS
91	Species relationships and divergence times in beeches: new insights from the inclusion of 53 young and old fossils in a birth–death clock model. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150135.	4.0	52
92	Paul Stefan Vogel (1925–2015). Taxon, 2016, 65, 203-204.	0.7	3
93	The Plastomes of Two Species in the Endoparasite Genus <i>Pilostyles</i> (Apodanthaceae) Each Retain Just Five or Six Possibly Functional Genes. Genome Biology and Evolution, 2016, 8, 189-201.	2.5	113
94	Evolutionary Relationships and Biogeography of the Ant-Epiphytic Genus Squamellaria (Rubiaceae:) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
95	Is plant collecting in Germany coming to an end?. Willdenowia, 2016, 46, 93-97.	0.8	11
96	Gain and loss of specialization in two oil-bee lineages, <i>Centris</i> and <i>Epicharis</i> (Apidae). Evolution; International Journal of Organic Evolution, 2015, 69, 1835-1844.	2.3	23
97	Diversity and clade ages of West Indian hummingbirds and the largest plant clades dependent on them: a 5-9 Myr young mutualistic system. Biological Journal of the Linnean Society, 2015, 114, 848-859.	1.6	20
98	Phylogenetics and molecular clocks reveal the repeated evolution of antâ€plants after the late <scp>M</scp> iocene in <scp>A</scp> frica and the early <scp>M</scp> iocene in <scp>A</scp> ustralasia and the <scp>N</scp> eotropics. New Phytologist, 2015, 207, 411-424.	7.3	76
99	Using More Than the Oldest Fossils: Dating Osmundaceae with Three Bayesian Clock Approaches. Systematic Biology, 2015, 64, 396-405.	5.6	56
100	Biological flora of Central Europe: Dactylorhiza sambucina (L.) SoÃ ³ . Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 318-329.	2.7	14
101	Transposable elements in a clade of three tetraploids and a diploid relative, focusing on Gypsy amplification. Mobile DNA, 2015, 6, 5.	3.6	22
102	The temporal build-up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evolutionary Biology, 2015, 15, 104.	3.2	49
103	Biogeography and diversification rates in hornworts: The limitations of diversification modeling. Taxon, 2015, 64, 229-238.	0.7	24
104	Perception of photoperiod in individual buds of mature trees regulates leafâ€out. New Phytologist, 2015, 208, 1023-1030.	7.3	67
105	Macroevolutionary assembly of ant/plant symbioses: <i>Pseudomyrmex</i> ants and their ant-housing plants in the Neotropics. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152200.	2.6	51
106	Interstitial telomere-like repeats in the monocot family Araceae. Botanical Journal of the Linnean Society, 2015, 177, 15-26.	1.6	21

107	The velamen protects photosynthetic orchid roots against <scp>UV</scp> â€ <scp>B</scp> damage, and a large dated phylogeny implies multiple gains and losses of this function during the <scp>C</scp> enozoic. New Phytologist, 2015, 205, 1330-1341.	7.3	90
108	A phylogeny and biogeographic analysis for the Cape-Pondweed family Aponogetonaceae (Alismatales). Molecular Phylogenetics and Evolution, 2015, 82, 111-117.	2.7	22

#	Article	IF	CITATIONS
109	Watermelon origin solved with molecular phylogenetics including <scp>L</scp> innaean material: another example of museomics. New Phytologist, 2015, 205, 526-532.	7.3	154
110	Taxonomy in the electronic age and an eâ€monograph of the papaya family (C aricaceae) as an example. Cladistics, 2015, 31, 321-329.	3.3	8
111	The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany, 2014, 101, 1588-1596.	1.7	527
112	From Taxonomy to Phylogenetics: Life and Work of Willi Hennig.— By Michael Schmitt Systematic Biology, 2014, 63, 452-453.	5.6	0
113	(2313) Proposal to conserve the name <i>Momordica lanata</i> (<i>Citrullus lanatus</i>) (watermelon, <i>Cucurbitaceae</i>), with a conserved type, against <i>Citrullus battich</i> . Taxon, 2014, 63, 941-942.	0.7	23
114	Ultrametric trees or phylograms for ancestral state reconstruction: Does it matter?. Taxon, 2014, 63, 721-726.	0.7	29
115	Leaf fossils of <i>Luzuriaga</i> and a monocot flower with in situ pollen of <i>Liliacidites contortus</i> Mildenh. & Bannister sp. nov. (Alstroemeriaceae) from the Early Miocene. American Journal of Botany, 2014, 101, 141-155.	1.7	22
116	Several origins of floral oil in the Angelonieae, a southern hemisphere disjunct clade of Plantaginaceae. American Journal of Botany, 2014, 101, 2113-2120.	1.7	17
117	Revisiting <i>Luffa</i> (Cucurbitaceae) 25 Years After C. Heiser: Species Boundaries and Application of Names Tested with Plastid and Nuclear DNA Sequences. Systematic Botany, 2014, 39, 205-215.	0.5	20
118	Common garden comparison of the leafâ€out phenology of woody species from different native climates, combined with herbarium records, forecasts longâ€ŧerm change. Ecology Letters, 2014, 17, 1016-1025.	6.4	112
119	The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, andÂcolor photos of most species. PhytoKeys, 2014, 36, 41-57.	1.0	18
120	A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Molecular Phylogenetics and Evolution, 2014, 78, 25-35.	2.7	68
121	Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). Annals of Botany, 2014, 113, 669-680.	2.9	25
122	The corbiculate bees arose from New World oil-collecting bees: Implications for the origin of pollen baskets. Molecular Phylogenetics and Evolution, 2014, 80, 88-94.	2.7	63
123	Nextâ€generation sequencing, <scp>FISH</scp> mapping and syntenyâ€based modeling reveal mechanisms of decreasing dysploidy in <i><scp>C</scp>ucumis</i> . Plant Journal, 2014, 77, 16-30.	5.7	90
124	Evolutionary ecology of specialization: insights from phylogenetic analysis. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142004.	2.6	75
125	The Evolution of Colchicaceae, with a Focus on Chromosome Numbers. Systematic Botany, 2014, 39, 415-427.	0.5	11
126	Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytologist, 2014, 203, 1208-1219.	7.3	122

#	Article	IF	CITATIONS
127	Exploring new dating approaches for parasites: The worldwide Apodanthaceae (Cucurbitales) as an example. Molecular Phylogenetics and Evolution, 2014, 80, 1-10.	2.7	37
128	Assessing model sensitivity in ancestral area reconstruction using L <scp>agrange</scp> : a case study using the Colchicaceae family. Journal of Biogeography, 2014, 41, 1414-1427.	3.0	36
129	Harvesting Betulaceae sequences from GenBank to generate a new chronogram for the family. Botanical Journal of the Linnean Society, 2013, 172, 465-477.	1.6	45
130	A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molecular Phylogenetics and Evolution, 2013, 69, 717-727.	2.7	99
131	A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013, 45, 1510-1515.	21.4	472
132	Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evolutionary Biology, 2013, 13, 239.	3.2	60
133	Characterization of the <scp>LTR</scp> retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant Journal, 2013, 75, 699-709.	5.7	42
134	Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. American Journal of Botany, 2013, 100, 1083-1094.	1.7	32
135	Mechanisms of Functional and Physical Genome Reduction in Photosynthetic and Nonphotosynthetic Parasitic Plants of the Broomrape Family. Plant Cell, 2013, 25, 3711-3725.	6.6	289
136	Evolutionary Biology for the 21st Century. PLoS Biology, 2013, 11, e1001466.	5.6	115
137	The Cucurbitaceae of India: Accepted names, synonyms, geographic distribution, and information on images and DNA sequences. PhytoKeys, 2013, 20, 53-118.	1.0	63
138	Correct names for some of the closest relatives of Carica papaya: A review of the Mexican/GuatemalanÂgenera Jarilla and Horovitzia. PhytoKeys, 2013, 29, 63-74.	1.0	8
139	Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by â€~x'. Annals of Botany, 2012, 109, 681-692.	2.9	50
140	Response to Comments on "Global Correlations in Tropical Tree Species Richness and Abundance Reject Neutrality― Science, 2012, 336, 1639-1639.	12.6	1
141	Next-Generation Sequencing Reveals the Impact of Repetitive DNA Across Phylogenetically Closely Related Genomes of Orobanchaceae. Molecular Biology and Evolution, 2012, 29, 3601-3611.	8.9	82
142	Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18873-18878.	7.1	103
143	Morphological and molecular data reveal three rather than one species of Sicyos (Cucurbitaceae) in Australia, New Zealand and Islands of the South West Pacific. Australian Systematic Botany, 2012, 25, 188.	0.9	5
144	A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Molecular Phylogenetics and Evolution, 2012, 62, 928-942.	2.7	100

#	Article	IF	CITATIONS
145	Giant taro and its relatives: A phylogeny of the large genus Alocasia (Araceae) sheds light on Miocene floristic exchange in the Malesian region. Molecular Phylogenetics and Evolution, 2012, 63, 43-51.	2.7	74
146	Brunfelsia (Solanaceae): A genus evenly divided between South America and radiations on Cuba and other Antillean islands. Molecular Phylogenetics and Evolution, 2012, 64, 1-11.	2.7	41
147	A New Method for Handling Missing Species in Diversification Analysis Applicable to Randomly or Nonrandomly Sampled Phylogenies. Systematic Biology, 2012, 61, 785-792.	5.6	62
148	Ribosomal DNA distribution and a genusâ€wide phylogeny reveal patterns of chromosomal evolution in <i>Alstroemeria</i> (Alstroemeriaceae). American Journal of Botany, 2012, 99, 1501-1512.	1.7	33
149	Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist, 2012, 195, 938-950.	7.3	167
150	Distribution Models and a Dated Phylogeny for Chilean Oxalis Species Reveal Occupation of New Habitats by Different Lineages, not Rapid Adaptive Radiation. Systematic Biology, 2012, 61, 823-834.	5.6	81
151	Molecular phylogenetics of <i>Echinopsis</i> (Cactaceae): Polyphyly at all levels and convergent evolution of pollination modes and growth forms. American Journal of Botany, 2012, 99, 1335-1349.	1.7	76
152	A dated phylogeny of the papaya family (Caricaceae) reveals the crop's closest relatives and the family's biogeographic history. Molecular Phylogenetics and Evolution, 2012, 65, 46-53.	2.7	112
153	Spurs in a Spur: Perianth Evolution in the Delphinieae (Ranunculaceae). International Journal of Plant Sciences, 2012, 173, 1036-1054.	1.3	47
154	Global Correlations in Tropical Tree Species Richness and Abundance Reject Neutrality. Science, 2012, 335, 464-467.	12.6	91
155	Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7793-7798.	7.1	236
156	Radiation following longâ€distance dispersal: the contributions of time, opportunity and diaspore morphology in <i>Sicyos</i> (Cucurbitaceae). Journal of Biogeography, 2012, 39, 1427-1438.	3.0	22
157	From East Gondwana to Central America: historical biogeography of the Alstroemeriaceae. Journal of Biogeography, 2012, 39, 1806-1818.	3.0	58
158	Living Fossil Younger than Thought. Science, 2011, 334, 766-767.	12.6	18
159	Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon, 2011, 60, 122-138.	0.7	192
160	<i>Consolida</i> and <i>Aconitella</i> are an annual clade of <i>Delphinium</i> (Ranunculaceae) that diversified in the Mediterranean basin and the Irano‶uranian region. Taxon, 2011, 60, 1029-1040.	0.7	58
161	Gelechiidae Moths Are Capable of Chemically Dissolving the Pollen of Their Host Plants: First Documented Sporopollenin Breakdown by an Animal. PLoS ONE, 2011, 6, e19219.	2.5	14
162	Sex Chromosomes in Land Plants. Annual Review of Plant Biology, 2011, 62, 485-514.	18.7	405

#	Article	IF	CITATIONS
163	A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia(Cucurbitaceae). BMC Evolutionary Biology, 2011, 11, 28.	3.2	56
164	A new Australian species of Luffa (Cucurbitaceae) and typification of two Australian Cucumis names, all based on specimens collected by Ferdinand Mueller in 1856. PhytoKeys, 2011, 5, 21.	1.0	10
165	<i>Cucumis</i> (Cucurbitaceae) in Australia and Eastern Malesia, Including Newly Recognized Species and the Sister Species to <i>C. melo</i> . Systematic Botany, 2011, 36, 376-389.	0.5	13
166	Nuclear ITS Sequences Help Disentangle <i>Phyllanthus reticulatus</i> (Phyllanthaceae), an Asian Species not Occurring in Africa, but Introduced to Jamaica. Systematic Botany, 2011, 36, 99-104.	0.5	19
167	Coccinia (Cucurbitaceae) gains two new species from East Africa, three new synonyms, and one new combination. Kew Bulletin, 2010, 65, 435-441.	0.9	5
168	The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evolutionary Biology, 2010, 10, 219.	3.2	38
169	A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae). BMC Research Notes, 2010, 3, 166.	1.4	12
170	A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Molecular Phylogenetics and Evolution, 2010, 54, 553-560.	2.7	150
171	Passerine Pollination of <i>Rhodoleia championii</i> (Hamamelidaceae) in Subtropical China. Biotropica, 2010, 42, 336-341.	1.6	12
172	Darwin's Galapagos gourd: providing new insights 175 years after his visit. Journal of Biogeography, 2010, 37, 975-978.	3.0	24
173	Transâ€Atlantic, transâ€Pacific and transâ€Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. Journal of Biogeography, 2010, 37, 1214-1226.	3.0	69
174	Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and longâ€distance dispersal, but not West Gondwana. Journal of Biogeography, 2010, 37, 1227-1238.	3.0	102
175	Biogeographic insights from a shortâ€lived Palaeocene island in the Ninetyeast Ridge. Journal of Biogeography, 2010, 37, 1177-1178.	3.0	4
176	A phylogeny of the Areae (Araceae) implies that <i>Typhonium, Sauromatum</i> , and the Australian species of <i>Typhonium</i> are distinct clades. Taxon, 2010, 59, 439-447.	0.7	31
177	Biogeography of <i>Cedrela</i> (Meliaceae, Sapindales) in Central and South America. American Journal of Botany, 2010, 97, 511-518.	1.7	50
178	The evolution of <i>Cayaponia</i> (Cucurbitaceae): Repeated shifts from bat to bee pollination and longâ€distance dispersal to Africa 2–5 million years ago. American Journal of Botany, 2010, 97, 1129-1141.	1.7	26
179	Slowdowns in Diversification Rates from Real Phylogenies May Not be Real. Systematic Biology, 2010, 59, 458-464.	5.6	184
180	Flower heating following anthesis and the evolution of gall midge pollination in Schisandraceae. American Journal of Botany, 2010, 97, 1220-1228.	1.7	25

#	Article	IF	CITATIONS
181	A Gift from the New World? The West African Crop <l>Cucumeropsis mannii</l> and the American <l>Posadaea sphaerocarpa</l> (Cucurbitaceae) are the Same Species. Systematic Botany, 2010, 35, 534-540.	0.5	20
182	Cucumber (<i>Cucumis sativus</i>) and melon (<i>C. melo</i>) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14269-14273.	7.1	351
183	Phylogeography of the ancient Eurasian medicinal plant genus <i>Bryonia</i> (Cucurbitaceae) inferred from nuclear and chloroplast sequences. Taxon, 2009, 58, 550-560.	0.7	20
184	More Miocene Dispersal Between Africa and Asia—the Case of <i>Bridelia</i> (Phyllanthaceae). Systematic Botany, 2009, 34, 521-529.	0.5	52
185	Courds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 843-851.	2.6	265
186	A fossilâ€calibrated relaxed clock for <i>Ephedra</i> indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America. Journal of Systematics and Evolution, 2009, 47, 444-456.	3.1	67
187	A Phylogeny and Revised Circumscription for <i>Kairoa</i> (Monimiaceae), with the Description of a New Species from Papua New Guinea. Harvard Papers in Botany, 2009, 14, 71-81.	0.2	4
188	The Relationship Between <i>Anisosperma</i> and <i>Fevillea</i> (Cucurbitaceae), and a New Species of <i>Fevillea</i> from Bolivia. Systematic Botany, 2009, 34, 704-708.	0.5	9
189	Pollinator-mediated selfing in two deceptive orchids and a review of pollinium tracking studies addressing geitonogamy. Oecologia, 2008, 155, 497-508.	2.0	50
190	A phylogeny of the oil bee tribe Ctenoplectrini (Hymenoptera: Anthophila) based on mitochondrial and nuclear data: Evidence for Early Eocene divergence and repeated out-of-Africa dispersal. Molecular Phylogenetics and Evolution, 2008, 47, 799-811.	2.7	52
191	TIMING DEEP DIVERGENCE EVENTS IN CALCAREOUS DINOFLAGELLATES ¹ . Journal of Phycology, 2008, 44, 429-438.	2.3	25
192	Hybridization, polyploidy, and evolutionary transitions between monoecy and dioecy in <i>Bryonia</i> (Cucurbitaceae). American Journal of Botany, 2008, 95, 1297-1306.	1.7	60
193	Reevaluation of the cox1 Group I Intron in Araceae and Angiosperms Indicates a History Dominated by Loss rather than Horizontal Transfer. Molecular Biology and Evolution, 2008, 25, 265-276.	8.9	58
194	Rooting and Dating Maples (Acer) with an Uncorrelated-Rates Molecular Clock: Implications for North American/Asian Disjunctions. Systematic Biology, 2008, 57, 795-808.	5.6	80
195	<l>Linnaeosicyos</l> (Cucurbitaceae): a New Genus for <l>Trichosanthes amara</l> , the Caribbean Sister Species of all Sicyeae. Systematic Botany, 2008, 33, 349-355.	0.5	22
196	<i>Austrobryonia</i> (Cucurbitaceae), a New Australian Endemic Genus, is the Closest Living Relative to the Eurasian and Mediterranean <i>Bryonia</i> and <i>Ecballium</i> . Systematic Botany, 2008, 33, 125-132.	0.5	17
197	Duodichogamy and androdioecy in the Chinese Phyllanthaceae <i>Bridelia tomentosa</i> . American Journal of Botany, 2007, 94, 260-265.	1.7	24
198	Placing plant mating in a broad ecological context. Trends in Ecology and Evolution, 2007, 22, 512-513.	8.7	0

#	Article	IF	CITATIONS
199	A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Molecular Phylogenetics and Evolution, 2007, 44, 553-577.	2.7	163
200	A phylogeny of Anisophylleaceae based on six nuclear and plastid loci: Ancient disjunctions and recent dispersal between South America, Africa, and Asia. Molecular Phylogenetics and Evolution, 2007, 44, 1057-1067.	2.7	21
201	Structure in mutualistic networks. Nature, 2007, 448, 877-879.	27.8	6
202	Synchronous flowering linked to changes in solar radiation intensity. New Phytologist, 2007, 175, 195-197.	7.3	19
203	Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evolutionary Biology, 2007, 7, 58.	3.2	125
204	Dating Dispersal and Radiation in the Gymnosperm Gnetum (Gnetales)—Clock Calibration When Outgroup Relationships Are Uncertain. Systematic Biology, 2006, 55, 610-622.	5.6	114
205	A Nuclear Ribosomal DNA Phylogeny of <i>Acer</i> Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	1.2	51
206	Towards a Monophyletic <i>Hoya</i> (Marsdenieae, Apocynaceae): Inferences from the Chloroplast <i>trnL</i> Region and the <i>rbcL-atpB</i> Spacer. Systematic Botany, 2006, 31, 586-596.	0.5	38
207	Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: Implications for morphological and sexual system evolution. Molecular Phylogenetics and Evolution, 2006, 39, 305-322.	2.7	121
208	Molecular phylogeny and intra- and intercontinental biogeography of Calycanthaceae. Molecular Phylogenetics and Evolution, 2006, 39, 1-15.	2.7	66
209	Wax plants disentangled: A phylogeny of Hoya (Marsdenieae, Apocynaceae) inferred from nuclear and chloroplast DNA sequences. Molecular Phylogenetics and Evolution, 2006, 39, 722-733.	2.7	34
210	Is the colour dimorphism inDactylorhiza sambucina maintained by differential seed viability instead of frequency-dependent selection?. Folia Geobotanica, 2006, 41, 61-76.	0.9	55
211	Biogeography, third edition. Systematic Biology, 2006, 55, 696-698.	5.6	6
212	Oxalis debilis in China: Distribution of Flower Morphs, Sterile Pollen and Polyploidy. Annals of Botany, 2006, 98, 459-464.	2.9	27
213	Selfâ€Pollination by Sliding Pollen inCaulokaempferia coenobialis(Zingiberaceae). International Journal of Plant Sciences, 2005, 166, 753-759.	1.3	19
214	The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Molecular Phylogenetics and Evolution, 2005, 36, 581-597.	2.7	78
215	Photoperiodic induction of synchronous flowering near the Equator. Nature, 2005, 433, 627-629.	27.8	195
216	The Chloroplast trnT–trnF Region in the Seed Plant Lineage Gnetales. Journal of Molecular Evolution, 2005, 61, 425-436.	1.8	18

#	Article	IF	CITATIONS
217	Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes. International Journal of Plant Sciences, 2005, 166, 815-842.	1.3	162
218	Relaxed molecular clocks for dating historical plant dispersal events. Trends in Plant Science, 2005, 10, 550-558.	8.8	213
219	A chloroplast phylogeny of <i>Arisaema</i> (Araceae) illustrates Tertiary floristic links between Asia, North America, and East Africa. American Journal of Botany, 2004, 91, 881-888.	1.7	44
220	Bayesian analysis of combined chloroplast loci, using multiple calibrations, supports the recent arrival of Melastomataceae in Africa and Madagascar. American Journal of Botany, 2004, 91, 1427-1435.	1.7	52
221	Biogeography of the Pistia Clade (Araceae): Based on Chloroplast and Mitochondrial DNA Sequences and Bayesian Divergence Time Inference. Systematic Biology, 2004, 53, 422-432.	5.6	66
222	A new self-pollination mechanism. Nature, 2004, 431, 39-40.	27.8	54
223	Phylogeny and circumscription of the nearâ€endemic Brazilian tribe Microlicieae (Melastomataceae). American Journal of Botany, 2004, 91, 1105-1114.	1.7	110
224	Plant Dispersal across the Tropical Atlantic by Wind and Sea Currents. International Journal of Plant Sciences, 2004, 165, S23-S33.	1.3	291
225	Tropical Intercontinental Disjunctions: Gondwana Breakup, Immigration from the Boreotropics, and Transoceanic Dispersal. International Journal of Plant Sciences, 2004, 165, S1-S6.	1.3	126
226	A New Miconia (Melastomataceae) from Bolivia, with Remarks on Angular-Branched Species in the Andes. Novon, 2003, 13, 110.	0.3	4
227	The Deepest Splits in Chloranthaceae as Resolved by Chloroplast Sequences. International Journal of Plant Sciences, 2003, 164, S383-S392.	1.3	65
228	Horizontal gene transfer from flowering plants to Gnetum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10824-10829.	7.1	211
229	How common is heterodichogamy?. Trends in Ecology and Evolution, 2001, 16, 595-597.	8.7	87
230	Pollination of Sarcandra glabra (Chloranthaceae) in Natural Populations in Japan. Journal of Plant Research, 2001, 114, 423-427.	2.4	19
231	MELASTOMEAE COME FULL CIRCLE: BIOGEOGRAPHIC RECONSTRUCTION AND MOLECULAR CLOCK DATING. Evolution; International Journal of Organic Evolution, 2001, 55, 1315-1324.	2.3	111
232	Repeated Evolution of Dioecy from Monoecy in Siparunaceae (Laurales). Systematic Biology, 2001, 50, 700-712.	5.6	78
233	Correlations among fruit traits and evolution of different fruits within Melastomataceae. Botanical Journal of the Linnean Society, 2000, 133, 303-326.	1.6	91
234	New Species of Siparuna (Siparunaceae) III. Three New Species and One Newly Ranked Entity from Colombia, Ecuador, and Peru. Novon, 2000, 10, 134.	0.3	3

#	Article	IF	CITATIONS
235	Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. American Journal of Botany, 1999, 86, 1301-1315.	1.7	162
236	Herbicidal Activity of Domatia-Inhabiting Ants in Patches of Tococa guianensis and Clidemia heterophylla1. Biotropica, 1998, 30, 324-327.	1.6	36
237	Phylogenetic affinities of Monimiaceae based on cpDNA gene and spacer sequences. Perspectives in Plant Ecology, Evolution and Systematics, 1998, 1, 61-77.	2.7	49
238	New Species and New Combinations in Sonerila and Phyllagathis (Melastomataceae) from Thailand. Novon, 1997, 7, 106.	0.3	8
239	New Species of Siparuna (Monimiaceae) II. Seven New Species from Ecuador and Colombia. Novon, 1996, 6, 103.	0.3	1
240	D <scp>ioecy and its correlates in the flowering plants</scp> . American Journal of Botany, 1995, 82, 596-606.	1.7	511
241	New Species of Siparuna (Monimiaceae) I. Four New Species from Ecuador and Colombia. Novon, 1995, 5, 61.	0.3	2
242	Dioecy and Its Correlates in the Flowering Plants. American Journal of Botany, 1995, 82, 596.	1.7	380
243	Revisions of Pterogastra and Schwackaea (Melastomataceae: Melastomeae). Nordic Journal of Botany, 1994, 14, 65-71.	0.5	13
244	A revision of Pterolepis (Melastomataceae: Melastomeae). Nordic Journal of Botany, 1994, 14, 73-104.	0.5	44
245	Systematics and biodiversity. Trends in Ecology and Evolution, 1994, 9, 78.	8.7	28
246	Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany, 1993, 13, 519-540.	0.5	305
247	Pollinators of tropical dioecious angiosperms. American Journal of Botany, 1993, 80, 1100-1107.	1.7	77
248	Floral biological observations onHeliamphora tatei (Sarraceniaceae) and other plants from Cerro de la Neblina in Venezuela. Plant Systematics and Evolution, 1989, 163, 21-29.	0.9	33
249	Sandemania Hoehnei (Melastomataceae: Tibouchineae): Taxonomy, Distribution, and Biology. Brittonia, 1987, 39, 441.	0.2	14
250	Reproductive biology of Bellucia (MELASTOMATACEAE). Acta Amazonica, 1986, 16, 197-218.	0.7	18
251	The Widespread Occurrence of Anther Destruction by Trigona Bees in Melastomataceae. Biotropica, 1983, 15, 251.	1.6	76
252	One-year-old flower strips already support a quarter of a city's bee species. Journal of Hymenoptera Research, 0, 75, 87-95.	0.8	9

#	Article	IF	CITATIONS
253	Foraging distances in six species of solitary bees with body lengths of 6 to 15 mm, inferred from individual tagging, suggest 150 m-rule-of-thumb for flower strip distances. Journal of Hymenoptera Research, 0, 77, 105-117.	0.8	53