Yasushi Obora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8953806/publications.pdf

Version: 2024-02-01

95 papers

3,763 citations

35 h-index 58 g-index

114 all docs

 $\begin{array}{c} 114 \\ \\ \text{docs citations} \end{array}$

114 times ranked

3029 citing authors

#	Article	IF	Citations
1	Recent Advances in $\hat{l}\pm\langle i\rangle$ - $\langle li\rangle$ Alkylation Reactions using Alcohols with Hydrogen Borrowing Methodologies. ACS Catalysis, 2014, 4, 3972-3981.	11.2	390
2	Iridium-catalyzed selective \hat{l}_{\pm} -methylation of ketones with methanol. Chemical Communications, 2014, 50, 2491-2493.	4.1	143
3	Guerbet Reaction of Primary Alcohols Leading to \hat{l}^2 -Alkylated Dimer Alcohols Catalyzed by Iridium Complexes. Journal of Organic Chemistry, 2006, 71, 8306-8308.	3.2	138
4	Guerbet Reaction of Ethanol to <i>n</i> -Butanol Catalyzed by Iridium Complexes. Chemistry Letters, 2009, 38, 838-839.	1.3	110
5	Iridium-Catalyzed α-Alkylation of Acetates with Primary Alcohols and Diols. Journal of the American Chemical Society, 2010, 132, 2536-2537.	13.7	109
6	Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chemical Communications, 2011, 47, 5750.	4.1	109
7	Phosphines Having a 2,3,4,5-Tetraphenylphenyl Moiety:Â Effective Ligands in Palladium-Catalyzed Transformations of Aryl Chlorides. Organometallics, 2006, 25, 4665-4669.	2.3	101
8	Iridium-Catalyzed Oxidative Methyl Esterification of Primary Alcohols and Diols with Methanol. Journal of Organic Chemistry, 2011, 76, 2937-2941.	3.2	94
9	Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst in Ullmann-coupling reaction. Chemical Communications, 2012, 48, 3784.	4.1	94
10	Alkylation of active methylene compounds with alcohols catalyzed by an iridium complex. Chemical Communications, 2007, , 2850.	4.1	90
11	Preparation and use of DMF-stabilized iridium nanoclusters as methylation catalysts using methanol as the C1 source. Chemical Communications, 2017, 53, 1080-1083.	4.1	86
12	Intermolecular Aerobic Oxidative Allylic Amination of Simple Alkenes with Diarylamines Catalyzed by the Pd(OCOCF ₃) ₂ /NPMoV/O ₂ System. Organic Letters, 2010, 12, 1372-1374.	4.6	84
13	Iridium-Catalyzed Reactions Involving Transfer Hydrogenation, Addition, N-Heterocyclization, and Alkylation Using Alcohols and Diols as Key Substrates. Synlett, 2011, 2011, 30-51.	1.8	83
14	<i>N</i> -Heterocyclization of Naphthylamines with 1,2- and 1,3-Diols Catalyzed by an Iridium Chloride/BINAP System. Journal of Organic Chemistry, 2009, 74, 628-633.	3.2	77
15	Palladium-catalyzed decarbonylative coupling of acid chlorides, organodisilanes, and 1,3-dienes. Journal of the American Chemical Society, 1993, 115, 10414-10415.	13.7	74
16	Niobium Complexes in Organic Transformations: From Stoichiometric Reactions to Catalytic [2+2+2] Cycloaddition Reactions. European Journal of Organic Chemistry, 2015, 2015, 5041-5054.	2.4	74
17	Iridium-Catalyzed Alkylation of Methylquinolines with Alcohols. Journal of Organic Chemistry, 2012, 77, 9429-9433.	3.2	72
18	Strategy for the Synthesis of Pyrimidine Derivatives: NbCl ₅ -Mediated Cycloaddition of Alkynes and Nitriles. Organometallics, 2012, 31, 5235-5238.	2.3	63

#	Article	IF	Citations
19	Iridiumâ€Catalyzed Reactions of ωâ€Arylalkanols to α,ωâ€Diarylalkanes. Angewandte Chemie - International Edition, 2011, 50, 8618-8622.	13.8	60
20	Intermolecular Oxidative Amination of Olefins with Amines Catalyzed by the Pd(II)/NPMoV/O ₂ System. Organic Letters, 2009, 11, 5058-5061.	4.6	59
21	Low-Valent Niobium-Catalyzed Intermolecular [2 + 2 + 2] Cycloaddition of <i>tert</i> -Butylacetylene and Arylnitriles to Form 2,3,6-Trisubstituted Pyridine Derivatives. Journal of Organic Chemistry, 2013, 78, 7771-7776.	3.2	59
22	Iridium-Catalyzed Coupling Reaction of Primary Alcohols with 1-Aryl-1-propynes Leading to Secondary Homoallylic Alcohols. Organic Letters, 2009, 11, 3510-3513.	4.6	57
23	Oxidative dimerization of primary alcohols to esters catalyzed by iridium complexes. Tetrahedron Letters, 2006, 47, 9199-9201.	1.4	55
24	Iridium-catalyzed \hat{l} ±-Alkylation of Acetonitrile with Primary and Secondary Alcohols. Chemistry Letters, 2011, 40, 1055-1057.	1.3	55
25	Palladium-Catalyzed <i>Z</i> -Selective Oxidative Amination of <i>ortho</i> -Substituted Primary Anilines with Olefins under an Open Air Atmosphere. Journal of Organic Chemistry, 2013, 78, 6332-6337.	3.2	51
26	C-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 2016, 374, 11.	5.8	50
27	Palladium Complex Catalyzed Acylation of Allylic Esters with Acylstannanes:Â Complementary Method to the Acylation with Acylsilanes. Journal of Organic Chemistry, 2002, 67, 5835-5837.	3.2	48
28	Iridiumâ€Catalyzed Coupling Reaction of Primary Alcohols with 2â€Alkynes Leading to Hydroacylation Products. Chemistry - A European Journal, 2010, 16, 1883-1888.	3.3	48
29	Transitionâ€Metalâ€Mediated/Catalyzed Synthesis of Pyridines, Pyrimidines, and Triazines by [2+2+2] Cycloaddition Reactions. Asian Journal of Organic Chemistry, 2020, 9, 1532-1547.	2.7	46
30	Synthesis of binary solid solution Cu–Pd nanoparticles by DMF reduction for enhanced photoluminescence properties. Journal of Materials Chemistry C, 2015, 3, 514-520.	5.5	42
31	Oxidative arylation of ethylene with benzene catalyzed by Pd(OAc)2/heteropoly acid/O2 system. New Journal of Chemistry, 2008, 32, 738.	2.8	41
32	Synthesis of l %-Hydroxy Carboxylic Acids and l ±, l %-Dimethyl Ketones Using l ±, l %-Diols As Alkylating Agents. Journal of Organic Chemistry, 2010, 75, 1803-1806.	3.2	38
33	FeCl ₃ -Assisted Niobium-Catalyzed Cycloaddition of Nitriles and Alkynes: Synthesis of Alkyl- and Arylpyrimidines Based on Independent Functions of NbCl ₅ and FeCl ₃ Lewis Acids. Organic Letters, 2017, 19, 5569-5572.	4.6	38
34	Solution Synthesis of <i>N</i> , <i>N</i> â€Dimethylformamideâ€Stabilized Ironâ€Oxide Nanoparticles as an Efficient and Recyclable Catalyst for Alkene Hydrosilylation. ChemCatChem, 2018, 10, 2378-2382.	3.7	37
35	Selective Oxidation of Acetophenones Bearing Various Functional Groups to Benzoic Acid Derivatives with Molecular Oxygen. Advanced Synthesis and Catalysis, 2009, 351, 1677-1684.	4.3	36
36	$\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Dimethylformamide-Protected Single-Sized Metal Nanoparticles and Their Use as Catalysts for Organic Transformations. ACS Omega, 2020, 5, 98-103.	3.5	36

#	Article	IF	Citations
37	Cross-coupling reaction of thermally stable titanium(ii)-alkyne complexes with aryl halides catalysed by a nickel complex. Chemical Communications, 2003, , 2820.	4.1	35
38	N,N-Dimethylformamide-stabilized copper nanoparticles as a catalyst precursor for Sonogashira–Hagihara cross coupling. RSC Advances, 2017, 7, 22869-22874.	3.6	35
39	Synthesis of Diketones and ω-Hydroxy Ketones from Methyl Ketones and α,ω-Diols by an [IrCl(cod)]2/PPh3/KOH System. Bulletin of the Chemical Society of Japan, 2008, 81, 689-696.	3.2	32
40	NbCl \cdot sub \cdot 3 \cdot /sub \cdot -Catalyzed Three-Component [2 + 2 + 2] Cycloaddition Reaction of Terminal Alkynes, Internal Alkynes, and Alkenes to 1,3,4,5-Tetrasubstituted 1,3-Cyclohexadienes. Organic Letters, 2011, 13, 2568-2571.	4.6	32
41	Pd(II)/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins. Molecules, 2010, 15, 1487-1500.	3.8	29
42	<i>para</i> â€Selective Aerobic Oxidative CH Olefination of Aminobenzenes Catalyzed by Palladium/Molybdovanadophosphoric acid/2,4,6â€Trimethylbenzoic Acid System. ChemCatChem, 2012, 4, 187-191.	3.7	29
43	N,N-Dimethylformamide-stabilized palladium nanoclusters as catalyst for Migita–Kosugi–Stille cross-coupling reactions. Journal of Organometallic Chemistry, 2013, 745-746, 258-261.	1.8	29
44	Iridium-Catalyzed \hat{l} ±-Methylation of \hat{l} ±-Aryl Esters Using Methanol as the C1 Source. Organic Letters, 2019, 21, 3299-3303.	4.6	29
45	NbCl ₃ -catalyzed [2+2+2] intermolecular cycloaddition of alkynes and alkenes to 1,3-cyclohexadiene derivatives. Organic and Biomolecular Chemistry, 2009, 7, 428-431.	2.8	28
46	Direct oxidative coupling of benzenes with acrylonitriles to cinnamonitriles catalyzed by Pd(OAc)2/HPMoV/O2 system. Organic and Biomolecular Chemistry, 2010, 8, 4071.	2.8	28
47	Thiolate-protected Gold Nanoclusters Au ₂₅ (phenylethanethiol) ₁₈ : An Efficient Catalyst for the Synthesis of Propargylamines from Aldehydes, Amines, and Alkynes. Chemistry Letters, 2016, 45, 1457-1459.	1.3	28
48	NbCl ₃ -Catalyzed Intermolecular [2+2+2] Cycloaddition of Alkynes and $\hat{l}\pm,\hat{l}\%$ -Dienes: Highly Chemo- and Regioselective Formation of 5- $\hat{l}\%$ -Alkenyl-1,4-substituted-1,3-cyclohexadiene Derivatives. Journal of Organic Chemistry, 2010, 75, 6046-6049.	3.2	27
49	Low-valent Nb(iii)-mediated synthesis of 1,1,2-trisubstituted-1H-indenes from aliphatic ketones and aryl-substituted alkynes. Chemical Communications, 2005, , 901.	4.1	26
50	Aerobic Oxidation of Cyclohexane using <i>N</i> à€Hydroxyphthalimide Bearing Fluoroalkyl Chains. Advanced Synthesis and Catalysis, 2008, 350, 1323-1330.	4.3	26
51	Active Low-Valent Niobium Catalysts from NbCl ₅ and Hydrosilanes for Selective Intermolecular Cycloadditions. Journal of Organic Chemistry, 2011, 76, 8569-8573.	3.2	26
52	Palladium-Catalyzed Intermolecular Oxidative Amination of Alkenes with Amines, Using Molecular Oxygen as Terminal Oxidant. Catalysts, 2013, 3, 794-810.	3.5	25
53	<i>N</i> , <i>N</i> -Dimethylformamide-stabilized palladium nanoclusters as a catalyst for Larock indole synthesis. RSC Advances, 2018, 8, 11324-11329.	3.6	25
54	Palladiumâ€Catalyzed, Ligandâ€Controlled Chemoselective Oxidative Coupling Reactions of Benzene Derivatives with Acrylamides under an Oxygen Atmosphere. ChemCatChem, 2013, 5, 121-125.	3.7	24

#	Article	IF	CITATIONS
55	Nickel-Catalyzed Cross-Coupling Reaction of Niobium(III)â^'Alkyne Complexes with Aryl Iodides. Organometallics, 2006, 25, 2097-2100.	2.3	23
56	Synthesis of Substituted Furoates from Acrylates and Aldehydes by Pd(OAc)2/HPMoV/CeCl3/O2 System. Journal of Organic Chemistry, 2007, 72, 8820-8823.	3.2	21
57	Synthesis and Characterization of <i>N</i> , <i>N</i> -Dimethylformamide-Protected Palladium Nanoparticles and Their Use in the Suzuki–Miyaura Cross-Coupling Reaction. ACS Omega, 2020, 5, 9598-9604.	3.5	19
58	Rate Enhancement with a Bowl-Shaped Phosphane in the Rhodium-Catalyzed Hydrosilylation of Ketones. Angewandte Chemie, 2003, 115, 1325-1327.	2.0	18
59	The Direct Conversion of Ethanol to Ethyl and Methyl Acetates Catalyzed by Iridium Complex. Chemistry Letters, 2009, 38, 1106-1107.	1.3	18
60	Generation of low-valent alkoxy niobium from Nb(OEt)5 and Grignard reagents and their use as catalysts in the cyclotrimerization of isocyanates. Journal of Organometallic Chemistry, 2013, 741-742, 109-113.	1.8	18
61	NbCl5-mediated amidation of olefins with nitriles to secondary amides. Journal of Organometallic Chemistry, 2015, 775, 33-38.	1.8	17
62	Sonogashira–Hagihara and Mizoroki–Heck Coupling Polymerizations Catalyzed by Pd Nanoclusters. Macromolecules, 2017, 50, 4083-4087.	4.8	17
63	Iridium Complex-Catalyzed C2-Extension of Primary Alcohols with Ethanol via a Hydrogen Autotransfer Reaction. Journal of Organic Chemistry, 2020, 85, 11952-11958.	3.2	17
64	Palladium-Catalyzed Oxidative Silylation of Simple Olefins To Give Allylsilanes Using Hexamethyldisilane and Molecular Oxygen as the Sole Oxidant. Journal of Organic Chemistry, 2015, 80, 7317-7320.	3.2	15
65	Monophosphanylcalix[6]arene Ligands: Synthesis Characterization, Complexation, and Their Use in Catalysis. European Journal of Inorganic Chemistry, 2006, 2006, 222-230.	2.0	14
66	Iridium-catalyzed reaction of enones with alcohols affording 1,3-diketones. Chemical Communications, 2012, 48, 6720.	4.1	14
67	Carboxylation of benzene with CO and O2 catalyzed by Pd(OAc)2 combined with molybdovanadophosphates. Journal of Molecular Catalysis A, 2008, 282, 22-27.	4.8	11
68	Iridium-Catalyzed Synthesis of ï‰-Hydroxy Homoallylic Alcohols. Synthesis, 2013, 45, 2115-2119.	2.3	11
69	Synthesis of arylacetonitrile derivatives: Ni-catalyzed reaction of benzyl chlorides with trimethylsilyl cyanide under base-free conditions. RSC Advances, 2014, 4, 15736-15739.	3.6	11
70	NbCl ₅ /Zn/PCy ₃ -System-Catalyzed Intramolecular [2 + 2 + 2] Cycloadditions of Diynes and Alkenes To Form Bicyclic Cyclohexadienes. Organic Letters, 2017, 19, 5398-5401.	4.6	11
71	Recent advances in the synthesis of N-alkenyl carbazoles. Tetrahedron Letters, 2018, 59, 167-172.	1.4	9
72	In Situ-Generated Niobium-Catalyzed Synthesis of 3-Pyrroline Derivatives via Ring-Closing Metathesis Reactions. ACS Omega, 2018, 3, 8865-8873.	3 . 5	9

#	Article	IF	CITATIONS
73	Dimethylformamide-stabilised palladium nanoclusters catalysed coupling reactions of aryl halides with hydrosilanes/disilanes. RSC Advances, 2019, 9, 17425-17431.	3 . 6	9
74	Tiâ^'Pd Alloys as Heterogeneous Catalysts for the Hydrogen Autotransfer Reaction and Catalytic Improvement by Hydrogenation Effects. ChemCatChem, 2019, 11, 2432-2437.	3.7	9
75	New Strategies for Sulfate-Free Synthesis of Lactams from Cycloalkanes Using NHPI as a Key Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 1066-1075.	0.1	8
76	Selective Cyclodimerization and Cyclotrimerization of Acetals Bearing Electronâ€Withdrawing Groups Catalyzed by Lewis Acids. European Journal of Organic Chemistry, 2009, 2009, 4067-4072.	2.4	7
77	Surface Properties of Air-Exposed α-Ti–Pd Alloys via XPS and Cross-Coupling Reaction. Materials Transactions, 2018, 59, 1911-1914.	1.2	7
78	Selective Intermolecular [2+2+2] Cycloaddition of Terminal Alkynes and Alkenes by NbCl5 as a Catalyst Precursor. Chemistry Letters, 2016, 45, 943-945.	1.3	6
79	Iridium-Catalyzed Vinylation of Carbazole Derivatives with Vinyl Acetate. Synlett, 2017, 28, 719-723.	1.8	6
80	Thiolate-Protected Au25(SC2H4Ph)18 Nanoclusters as a Catalyst for Intermolecular Hydroamination of Terminal Alkynes. Synlett, 2018, 29, 2655-2659.	1.8	6
81	Catalytic Activity of Rhodium Phosphide for Selective Hydrodeoxygenation of Phenol. Chemistry Letters, 2019, 48, 471-474.	1.3	6
82	Catalytic enantioselective intramolecular Tishchenko reaction of meso-dialdehyde: synthesis of (S)-cedarmycins. RSC Advances, 2021, 11, 11606-11609.	3.6	6
83	Cross \hat{l}^2 -alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles. Organic and Biomolecular Chemistry, 2021, 19, 1950-1954.	2.8	6
84	Cross β-arylmethylation of alcohols catalysed by recyclable Ti–Pd alloys not requiring pre-activation. Chemical Communications, 2021, 57, 5139-5142.	4.1	5
85	Palladium atalyzed Difunctionalization of 1,3â€Diene with Amine and Disilane under a Mild Reâ€oxidation System. Chemistry - A European Journal, 2021, 27, 4888-4892.	3.3	4
86	Transition-Metal Complexes with Nano-Sized Phosphine and Pyridine Ligands-Catalysis, Fluxional Behavior and Molecular Recognition. Catalysis Surveys From Asia, 2005, 9, 259-268.	2.6	3
87	Bulk Ti–Pd Alloys as Easily Recyclable and Preactivation-Free Heterogeneous Catalysts for Cross-Coupling Reactions. Bulletin of the Chemical Society of Japan, 2019, 92, 710-715.	3.2	3
88	Effect of Water in Fabricating Copper Nanoparticles onto Reduced Graphene Oxide Nanosheets: Application in Catalytic Ullmann-Coupling Reactions. Bulletin of the Chemical Society of Japan, 2020, 93, 1164-1170.	3.2	2
89	Palladium-Catalyzed Three-Component Silylalkoxylation of 1,3-Diene with Alcohol and Disilane via Oxidative Coupling. Organic Letters, 2021, 23, 4898-4902.	4.6	2
90	N,N-Dimethylformamide-stabilised palladium nanoparticles combined with bathophenanthroline as catalyst for transfer vinylation of alcohols from vinyl ether. Organic and Biomolecular Chemistry, 2021, 19, 3384-3388.	2.8	2

#	Article	IF	CITATIONS
91	<i>N,N</i> â€Dimethylformamideâ€protected Fe ₂ O ₃ Combined with Pt Nanoparticles: Characterization and Catalysis in Alkene Hydrosilylation. ChemCatChem, 2022, 14, .	3.7	2
92	Application to Electroluminescence Devices with Dimethylformamide-Stabilized Niobium Oxide Nanoparticles. ACS Applied Nano Materials, 2022, 5, 7658-7663.	5.0	2
93	<i>N</i> , <i>N</i> -Dimethylformamide-stabilized ruthenium nanoparticle catalyst for β-alkylated dimer alcohol formation <i>via</i> Guerbet reaction of primary alcohols. RSC Advances, 2022, 12, 16599-16603.	3.6	2
94	Single nanosized FeO nanocrystals with photoluminescence properties. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	1
95	Early Transition Niobium Compounds in Organic Transformation^ ^mdash;From Stoichiometric Reaction to Catalytic Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 257-267.	0.1	1