## Aaron M Ring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8951983/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. Nature Biotechnology, 2022, 40, 374-381.                                                                                                  | 17.5 | 31        |
| 2  | Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a<br>Solid Organ Transplant Recipient. Journal of Infectious Diseases, 2022, 225, 374-384.                              | 4.0  | 7         |
| 3  | Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proceedings of the<br>National Academy of Sciences of the United States of America, 2022, 119, .                                                | 7.1  | 18        |
| 4  | High-throughput identification of autoantibodies that target the human exoproteome. Cell Reports<br>Methods, 2022, 2, 100172.                                                                                             | 2.9  | 22        |
| 5  | Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal of Experimental Medicine, 2021, 218, .                                                                                                                      | 8.5  | 677       |
| 6  | Abstract S03-03: Cancer patients display diminished viral RNA clearance and altered T cell responses during SARS-CoV-2 infection. , 2021, , .                                                                             |      | 0         |
| 7  | Case Study: Longitudinal immune profiling of a SARS-CoV-2 reinfection in a solid organ transplant recipient. , 2021, , .                                                                                                  |      | 3         |
| 8  | Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med, 2021, 2, 591-610.e10.                                                      | 4.4  | 122       |
| 9  | Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Reports Medicine, 2021, 2, 100288.                                                                          | 6.5  | 121       |
| 10 | Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine, 2021, 27, 1178-1186.                                                                                                       | 30.7 | 183       |
| 11 | Diverse functional autoantibodies in patients with COVID-19. Nature, 2021, 595, 283-288.                                                                                                                                  | 27.8 | 619       |
| 12 | Reply to: A finding of sex similarities rather than differences in COVID-19 outcomes. Nature, 2021, 597, E10-E11.                                                                                                         | 27.8 | 4         |
| 13 | The intestinal parasite <i>Cryptosporidium</i> is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 39        |
| 14 | The intersection of COVID-19 and autoimmunity. Journal of Clinical Investigation, 2021, 131, .                                                                                                                            | 8.2  | 138       |
| 15 | Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity. Cell, 2020, 180, 50-63.e12.                                                                                                                   | 28.9 | 120       |
| 16 | Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature, 2020, 588, 315-320.                                                                                                                  | 27.8 | 1,035     |
| 17 | Newborn Dried Blood Spots for Serologic Surveys of COVID-19. Pediatric Infectious Disease Journal, 2020, 39, e454-e456.                                                                                                   | 2.0  | 17        |
| 18 | Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal of Experimental Medicine, 2020, 217, .                                                                                        | 8.5  | 357       |

Aaron M Ring

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An Ixodes scapularis Protein Disulfide Isomerase Contributes to Borrelia burgdorferi Colonization of the Vector. Infection and Immunity, 2020, 88, .                                                      | 2.2  | 4         |
| 20 | Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Science Translational Medicine, 2020, 12, .                                                                        | 12.4 | 298       |
| 21 | IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature, 2020, 583, 609-614.                                                                                                   | 27.8 | 195       |
| 22 | Evolutionarily conserved resistance to phagocytosis observed in melanoma cells is insensitive to upregulation of pro-phagocytic signals and to CD47 blockade. Melanoma Research, 2020, 30, 147-158.       | 1.2  | 12        |
| 23 | SARS–CoV-2 infection of the placenta. Journal of Clinical Investigation, 2020, 130, 4947-4953.                                                                                                            | 8.2  | 387       |
| 24 | A human secretome library screen reveals a role for Peptidoglycan Recognition Protein 1 in Lyme borreliosis. PLoS Pathogens, 2020, 16, e1009030.                                                          | 4.7  | 9         |
| 25 | Mouse Model of SARS-CoV-2 Reveals Inflammatory Role of Type I Interferon Signaling. SSRN Electronic<br>Journal, 2020, , 3628297.                                                                          | 0.4  | 3         |
| 26 | 68. Active Monitoring of a Healthcare Worker Cohort During the COVID-19 Epidemic. Open Forum<br>Infectious Diseases, 2020, 7, S165-S165.                                                                  | 0.9  | 0         |
| 27 | GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell, 2019, 178, 1231-1244.e11.                                                                                                    | 28.9 | 319       |
| 28 | A Forward Chemical Genetic Screen Reveals Gut Microbiota Metabolites That Modulate Host<br>Physiology. Cell, 2019, 177, 1217-1231.e18.                                                                    | 28.9 | 221       |
| 29 | Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature<br>Structural and Molecular Biology, 2018, 25, 289-296.                                               | 8.2  | 360       |
| 30 | Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nature Immunology, 2018, 19, 76-84.                                           | 14.5 | 370       |
| 31 | Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling. Cell, 2017, 168, 1041-1052.e18.                                                                                       | 28.9 | 70        |
| 32 | PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity.<br>Nature, 2017, 545, 495-499.                                                                                | 27.8 | 1,489     |
| 33 | Practical Immuno-PET Radiotracer Design Considerations for Human Immune Checkpoint Imaging.<br>Journal of Nuclear Medicine, 2017, 58, 538-546.                                                            | 5.0  | 102       |
| 34 | Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>E10578-E10585. | 7.1  | 223       |
| 35 | T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight, 2017, 2,                                                                                                              | 5.0  | 68        |
| 36 | CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. Journal of Clinical Investigation, 2016, 126, 2610-2620.                                               | 8.2  | 336       |

Aaron M Ring

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structure and Dynamics of PD-L1 and an Ultra-High-Affinity PD-1 Receptor Mutant. Structure, 2016, 24, 1719-1728.                                                                                                              | 3.3  | 86        |
| 38 | Eradication of Canine Diffuse Large B-Cell Lymphoma in a Murine Xenograft Model with CD47 Blockade<br>and Anti-CD20. Cancer Immunology Research, 2016, 4, 1072-1087.                                                          | 3.4  | 46        |
| 39 | Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Science Translational Medicine, 2016, 8, 351ra105.                                                                        | 12.4 | 140       |
| 40 | HSC transplantation in an immunocompetent host without radiation or chemotherapy. Experimental<br>Hematology, 2015, 43, S57.                                                                                                  | 0.4  | 3         |
| 41 | CD47-blocking therapies stimulate macrophage cytokine secretion and are effective in a model of peritoneal carcinomatosis. , 2015, 3, .                                                                                       |      | 4         |
| 42 | Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct<br>Conformational Mechanisms. Immunity, 2015, 42, 815-825.                                                                           | 14.3 | 191       |
| 43 | Interleukin-2 Activity Can Be Fine Tuned with Engineered Receptor Signaling Clamps. Immunity, 2015, 42, 826-838.                                                                                                              | 14.3 | 147       |
| 44 | "Velcro―Engineering of High Affinity CD47 Ectodomain as Signal Regulatory Protein α (SIRPα)<br>Antagonists That Enhance Antibody-dependent Cellular Phagocytosis. Journal of Biological Chemistry,<br>2015, 290, 12650-12663. | 3.4  | 75        |
| 45 | Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6506-14.                          | 7.1  | 299       |
| 46 | Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. Journal of Clinical Investigation, 2014, 124, 4781-4794.                                                                                                    | 8.2  | 161       |
| 47 | Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504, 101-106.                                                                                                                      | 27.8 | 779       |
| 48 | Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature, 2013, 502, 575-579.                                                                                                           | 27.8 | 436       |
| 49 | Engineered SIRPα Variants as Immunotherapeutic Adjuvants to Anticancer Antibodies. Science, 2013, 341, 88-91.                                                                                                                 | 12.6 | 401       |
| 50 | Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. Journal of Experimental Medicine, 2013, 210, 1153-1165.                                                                                 | 8.5  | 120       |
| 51 | Improving macrophage responses to therapeutic antibodies by molecular engineering of SIRPα variants.<br>Oncolmmunology, 2013, 2, e25773.                                                                                      | 4.6  | 13        |
| 52 | Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nature<br>Immunology, 2012, 13, 1187-1195.                                                                                           | 14.5 | 206       |
| 53 | Exploiting a natural conformational switch to engineer an interleukin-2 â€~superkine'. Nature, 2012, 484,<br>529-533.                                                                                                         | 27.8 | 438       |
| 54 | WNK2 Kinase Is a Novel Regulator of Essential Neuronal Cation-Chloride Cotransporters. Journal of Biological Chemistry, 2011, 286, 30171-30180.                                                                               | 3.4  | 73        |

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a<br>WNK4-SPAK-dependent pathway. Proceedings of the National Academy of Sciences of the United States<br>of America, 2009, 106, 4384-4389.                                                 | 7.1  | 215       |
| 56 | Molecular Physiology of the WNK Kinases. Annual Review of Physiology, 2008, 70, 329-355.                                                                                                                                                                                         | 13.1 | 202       |
| 57 | An SGK1 site in WNK4 regulates Na <sup>+</sup> channel and K <sup>+</sup> channel activity and has implications for aldosterone signaling and K <sup>+</sup> homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4025-4029. | 7.1  | 147       |
| 58 | WNK4 regulates activity of the epithelial Na <sup>+</sup> channel <i>in vitro</i> and <i>in vivo</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4020-4024.                                                                 | 7.1  | 121       |
| 59 | WNK Protein Kinases Modulate Cellular Clâ <sup>°°</sup> Flux by Altering the Phosphorylation State of the Na-K-Cl<br>and K-Cl Cotransporters. Physiology, 2006, 21, 326-335.                                                                                                     | 3.1  | 105       |