Katharine Ullman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8949158/publications.pdf

Version: 2024-02-01

304743 434195 2,706 31 22 31 citations h-index g-index papers 34 34 34 3044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. ELife, $2021,10,.$	6.0	14
2	LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. Nature, 2020, 582, 115-118.	27.8	97
3	A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8900-E8908.	7.1	50
4	LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2166-E2175.	7.1	149
5	Nup153 and Nup50 promote recruitment of 53BP1 to DNA repair foci by antagonizing BRCA1-dependent events. Journal of Cell Science, 2017, 130, 3347-3359.	2.0	19
6	shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance. Blood, 2015, 125, 1772-1781.	1.4	41
7	An ESCRT to seal the envelope. Science, 2015, 348, 1314-1315.	12.6	10
8	Locking down the core of the pore. Science, 2015, 350, 33-34.	12.6	2
9	Enhanced Arginine Methylation of Programmed Cell Death 4 Protein during Nutrient Deprivation Promotes Tumor Cell Viability. Journal of Biological Chemistry, 2014, 289, 17541-17552.	3.4	21
10	The Nup153-Nup50 Protein Interface and Its Role in Nuclear Import*. Journal of Biological Chemistry, 2012, 287, 38515-38522.	3.4	49
11	The nuclear envelope environment and its cancer connections. Nature Reviews Cancer, 2012, 12, 196-209.	28.4	292
12	Protein Arginine Methyltransferase 5 Accelerates Tumor Growth by Arginine Methylation of the Tumor Suppressor Programmed Cell Death 4. Cancer Research, 2011, 71, 5579-5587.	0.9	126
13	Defects in nuclear pore assembly lead to activation of an Aurora B–mediated abscission checkpoint. Journal of Cell Biology, 2010, 191, 923-931.	5.2	95
14	Biology and Biophysics of the Nuclear Pore Complex and Its Components. International Review of Cell and Molecular Biology, 2008, 267, 299-342.	3.2	70
15	Sequence Preference in RNA Recognition by the Nucleoporin Nup153. Journal of Biological Chemistry, 2007, 282, 8734-8740.	3.4	14
16	Molecular Characterization of the Ran-binding Zinc Finger Domain of Nup153. Journal of Biological Chemistry, 2007, 282, 17090-17100.	3.4	41
17	Changes in Nucleoporin Domain Topology in Response to Chemical Effectors. Journal of Molecular Biology, 2006, 363, 39-50.	4.2	34
18	The nuclear envelope: form and reformation. Current Opinion in Cell Biology, 2006, 18, 108-116.	5.4	90

#	Article	IF	Citations
19	Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma, 2005, 114, 319-330.	2.2	83
20	Nucleoporin Domain Topology is Linked to the Transport Status of the Nuclear Pore Complex. Journal of Molecular Biology, 2005, 351, 784-798.	4.2	68
21	The RNA binding domain within the nucleoporin Nup153 associates preferentially with single-stranded RNA. Rna, 2004, 10, 19-27.	3.5	10
22	Nucleocytoplasmic Transport: Integrating mRNA Production and Turnover with Export through the Nuclear Pore. Molecular and Cellular Biology, 2004, 24, 3069-3076.	2.3	67
23	The COPI Complex Functions in Nuclear Envelope Breakdown and Is Recruited by the Nucleoporin Nup153. Developmental Cell, 2003, 5, 487-498.	7.0	70
24	RNA Export: Searching for mRNA Identity. Current Biology, 2002, 12, R461-R463.	3.9	10
25	RNA Association Defines a Functionally Conserved Domain in the Nuclear Pore Protein Nup153. Journal of Biological Chemistry, 2001, 276, 45349-45357.	3.4	25
26	Nuclear Export of Mammalian PERIOD Proteins. Journal of Biological Chemistry, 2001, 276, 45921-45927.	3.4	78
27	Nuclear Export Receptors: From Importin to Exportin. Cell, 1997, 90, 967-970.	28.9	261
28	RNA Polymerase III Transcription in Synthetic Nuclei Assembled In Vitro from Defined DNA Templates. Molecular and Cellular Biology, 1995, 15, 4873-4883.	2.3	17
29	Jun family members are controlled by a calcium-regulated, cyclosporin A-sensitive signaling pathway in activated T lymphocytes Genes and Development, 1993, 7, 188-196.	5.9	132
30	Activation of early gene expression in T lymphocytes by Oct-1 and an inducible protein, OAP40. Science, 1991, 254, 558-562.	12.6	153
31	Transmission of Signals from the T Lymphocyte Antigen Receptor to the Genes Responsible for Cell Proliferation and Immune Function: The Missing Link. Annual Review of Immunology, 1990, 8, 421-452.	21.8	516