Mathieu Sicard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8948522/publications.pdf

Version: 2024-02-01

304743 345221 1,476 47 22 36 citations h-index g-index papers 50 50 50 1146 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	From Wolbachia genomics to phenotype: molecular models of cytoplasmic incompatibility must account for the multiplicity of compatibility types. Current Opinion in Insect Science, 2022, 49, 78-84.	4.4	8
2	The mosquito microbiome includes habitat-specific but rare symbionts. Computational and Structural Biotechnology Journal, 2022, 20, 410-420.	4.1	13
3	Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Current Biology, 2022, 32, 1319-1331.e5.	3.9	37
4	Cytoplasmic Incompatibility Variations in Relation with <i>Wolbachia cid</i> Genes Divergence in Culex pipiens. MBio, 2021, 12, .	4.1	13
5	Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Frontiers in Cellular and Infection Microbiology, 2021, 11, 694020.	3.9	23
6	Experimental evidence of <i>Wolbachia</i> introgressive acquisition between terrestrial isopod subspecies. Environmental Epigenetics, 2021, 67, 455-464.	1.8	0
7	<i>Wolbachia</i> modulates prevalence and viral load of Culex pipiens densoviruses in natural populations. Molecular Ecology, 2020, 29, 4000-4013.	3.9	10
8	Variation in <i>Wolbachia cidB</i> gene, but not <i>cidA</i> , is associated with cytoplasmic incompatibility <i>mod</i> phenotype diversity in <i>Culex pipiens</i> . Molecular Ecology, 2019, 28, 4725-4736.	3.9	28
9	The Toxin–Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications. Trends in Genetics, 2019, 35, 175-185.	6.7	111
10	Caution Does Not Preclude Predictive and Testable Models of Cytoplasmic Incompatibility: A Reply to Shropshire et al Trends in Genetics, 2019, 35, 399-400.	6.7	21
11	Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. Current Opinion in Insect Science, 2019, 34, 12-20.	4.4	44
12	Evolution and phylogeography of Culex pipiens densovirus. Virus Evolution, 2019, 5, vez053.	4.9	5
13	RNA interference identifies domesticated viral genes involved in assembly and trafficking of virus-derived particles in ichneumonid wasps. PLoS Pathogens, 2019, 15, e1008210.	4.7	9
14	Sharing cells with <i>Wolbachia</i> : the transovarian vertical transmission of Culex pipiens densovirus. Environmental Microbiology, 2019, 21, 3284-3298.	3.8	25
15	Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nature Communications, 2018, 9, 319.	12.8	77
16	The cellular phenotype of cytoplasmic incompatibility in Culex pipiens in the light of cidB diversity. PLoS Pathogens, 2018, 14, e1007364.	4.7	34
17	Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey. Parasites and Vectors, $2018,11,198.$	2.5	23
18	Phenotypic shift in <i>Wolbachia</i> virulence towards its native host across serial horizontal passages. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171076.	2.6	18

#	Article	IF	CITATIONS
19	Isolation, characterization and PCR multiplexing of microsatellite loci for two sub-species of terrestrial isopod Porcellio dilatatus (Crustacea, Oniscidea). Genetica, 2016, 144, 223-228.	1.1	1
20	Transmission modes and the evolution of feminizing symbionts. Journal of Evolutionary Biology, 2016, 29, 2395-2409.	1.7	7
21	The Mutualistic Side of Wolbachia–Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria. Frontiers in Microbiology, 2015, 6, 1388.	3.5	25
22	The Hematopoietic Organ: A Cornerstone for Wolbachia Propagation Between and Within Hosts. Frontiers in Microbiology, 2015, 6, 1424.	3.5	10
23	A host as an ecosystem: <scp><i>W</i></scp> <i>olbachia</i> coping with environmental constraints. Environmental Microbiology, 2014, 16, 3583-3607.	3.8	36
24	Putative toxins from the entomopathogenic bacterium Photorhabdus luminescens kill Armadillidium vulgare (Terrestrial isopod). Biological Control, 2014, 69, 40-44.	3.0	4
25	Bidirectional cytoplasmic incompatibility caused by Wolbachia in the terrestrial isopod Porcellio dilatatus. Journal of Invertebrate Pathology, 2014, 121, 28-36.	3.2	22
26	Modulation of host immunity and reproduction by horizontally acquired Wolbachia. Journal of Insect Physiology, 2014, 70, 125-133.	2.0	10
27	Strength of the pathogenicity caused by feminizing Wolbachia after transfer in a new host: Strain or dose effect?. Journal of Invertebrate Pathology, 2014, 116, 18-26.	3.2	8
28	Horizontal transfers of feminizing versus nonâ€feminizing <i><scp>W</scp>olbachia</i> strains: from harmless passengers to pathogens. Environmental Microbiology, 2013, 15, 2922-2936.	3.8	15
29	Cannibalism and Predation as Paths for Horizontal Passage of Wolbachia between Terrestrial Isopods. PLoS ONE, 2013, 8, e60232.	2.5	104
30	High Virulence of Wolbachia after Host Switching: When Autophagy Hurts. PLoS Pathogens, 2012, 8, e1002844.	4.7	57
31	Variation of parasite load and immune parameters in two species of New Zealand shore crabs. Parasitology Research, 2011, 109, 759-767.	1.6	9
32	Variations of immune parameters in terrestrial isopods: a matter of gender, aging and Wolbachia. Die Naturwissenschaften, 2010, 97, 819-826.	1.6	32
33	Steinernema boemarei n. sp. (Nematoda: Steinernematidae), a new entomopathogenic nematode from southern France. Systematic Parasitology, 2009, 72, 127-141.	1.1	18
34	Manifold aspects of specificity in a nematode–bacterium mutualism. Journal of Evolutionary Biology, 2009, 22, 2104-2117.	1.7	31
35	Low migration decreases interference competition among parasites and increases virulence. Journal of Evolutionary Biology, 2008, 21, 1245-1251.	1.7	24
36	Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from HÃ@rault and Gard (Southern France). Journal of Invertebrate Pathology, 2008, 98, 211-217.	3.2	36

#	Article	IF	CITATIONS
37	Pathogenic effect of entomopathogenic nematode–bacterium complexes on terrestrial isopods. Journal of Invertebrate Pathology, 2008, 99, 20-27.	3.2	9
38	Wolbachia Mediate Variation of Host Immunocompetence. PLoS ONE, 2008, 3, e3286.	2.5	70
39	The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae). Environmental Microbiology, 2007, 9, 12-25.	3 . 8	49
40	Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Parasitology Research, 2007, 100, 657-659.	1.6	24
41	Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). BMC Evolutionary Biology, 2006, 6, 68.	3.2	35
42	Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Die Naturwissenschaften, 2005, 92, 472-476.	1.6	27
43	Effect of phenotypic variation inXenorhabdus nematophilaon its mutualistic relationship with the entomopathogenic nematodeSteinernema carpocapsae. Parasitology, 2005, 131, 687-694.	1.5	27
44	Stages of Infection during the Tripartite Interaction between Xenorhabdus nematophila, Its Nematode Vector, and Insect Hosts. Applied and Environmental Microbiology, 2004, 70, 6473-6480.	3.1	108
45	When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Journal of Evolutionary Biology, 2004, 17, 985-993.	1.7	80
46	Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interaction. Parasitology Research, 2003, 91, 520-524.	1.6	79
47	Is the Octomacridae the sister family of the Diplozoidae ?. Parasite, 2002, 9, 85-87.	2.0	7