Darren A Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8948360/publications.pdf

Version: 2024-02-01

81 papers 3,372 citations

33 h-index 57 g-index

88 all docs 88 docs citations

88 times ranked 4576 citing authors

#	Article	IF	CITATIONS
1	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, e202115619.	13.8	35
2	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2022, 134, .	2.0	1
3	Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2388-2396.	6.7	6
4	Redox-active hierarchical assemblies of hybrid polyoxometalate nanostructures at carbon surfaces. Inorganic Chemistry Frontiers, 2022, 9, 1777-1784.	6.0	1
5	Electrochemical reactivity of atomic and molecular species under solid-state confinement. Current Opinion in Electrochemistry, 2022, 34, 101014.	4.8	2
6	Understanding the Mg Cycling Mechanism on a MgTFSI-Glyme Electrolyte. ECS Meeting Abstracts, 2022, MA2022-01, 574-574.	0.0	1
7	Gel–Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 2021, 3, 200-208.	4.4	30
8	Molecular redox species for next-generation batteries. Chemical Society Reviews, 2021, 50, 5863-5883.	38.1	53
9	2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501.	5.3	74
10	Sustainability of Battery Technologies: Today and Tomorrow. ACS Sustainable Chemistry and Engineering, 2021, 9, 6507-6509.	6.7	16
11	Organic–Inorganic Hybrid Polyoxotungstates As Configurable Charge Carriers for High Energy Redox Flow Batteries. ACS Applied Energy Materials, 2021, 4, 8765-8773.	5.1	17
12	Electrochemistry of redox-active molecules confined within narrow carbon nanotubes. Chemical Society Reviews, 2021, 50, 10895-10916.	38.1	20
13	Diethylmethylammonium trifluoromethanesulfonate protic ionic liquid electrolytes for water electrolysis. Journal of Power Sources, 2020, 449, 227602.	7.8	11
14	Functionalization of Carbon Surfaces Tunes the Redox Stability of Polyoxometalate@Carbon Electrodes. ACS Applied Energy Materials, 2020, 3, 12308-12315.	5.1	6
15	Redoxâ€Active Hybrid Polyoxometalateâ€Stabilised Gold Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14331-14335.	13.8	25
16	Best Practice for Evaluating Electrocatalysts for Hydrogen Economy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20500-20506.	8.0	25
17	Redoxâ€Active Hybrid Polyoxometalateâ€Stabilised Gold Nanoparticles. Angewandte Chemie, 2020, 132, 14437-14441.	2.0	6
18	Oxygen Reduction Pathways in the Li-O2 Battery: Understanding Solvent-Water Interactions. ECS Meeting Abstracts, 2020, MA2020-02, 492-492.	0.0	O

#	Article	IF	Citations
19	Best Practice for Evaluating Electrocatalysts for the Hydrogen Economy. ECS Meeting Abstracts, 2020, MA2020-02, 3677-3677.	0.0	0
20	Physical and Electrochemical Modulation of Polyoxometalate Ionic Liquids via Organic Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 456-460.	2.0	12
21	Effects of chain length on the size, stability, and electronic structure of redox-active organic–inorganic hybrid polyoxometalate micelles. Molecular Systems Design and Engineering, 2019, 4, 995-999.	3.4	16
22	Efficient Electrocatalytic CO ₂ Reduction Driven by Ionic Liquid Buffer‣ike Solutions. ChemSusChem, 2019, 12, 4170-4175.	6.8	19
23	Host–Guest Hybrid Redox Materials Selfâ€Assembled from Polyoxometalates and Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2019, 31, e1904182.	21.0	77
24	Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature lonic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 11691-11699.	6.7	21
25	The Nature of Proton Shuttling in Protic Ionic Liquid Fuel Cells. Advanced Energy Materials, 2019, 9, 1900744.	19.5	42
26	An ultra-high vacuum electrochemical/mass spectrometry study of anodic decomposition of a protic ionic liquid. Electrochemistry Communications, 2018, 90, 111-115.	4.7	2
27	The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids. Journal of Electroanalytical Chemistry, 2018, 819, 187-192.	3.8	10
28	Valorization of lignin waste: high electrochemical capacitance of lignin-derived carbons in aqueous and ionic liquid electrolytes. Journal of Materials Chemistry A, 2018, 6, 18701-18711.	10.3	26
29	Sulfonylative and Azidosulfonylative Cyclizations by Visibleâ€Lightâ€Photosensitization of Sulfonyl Azides in THF. Chemistry - A European Journal, 2017, 23, 17598-17604.	3.3	44
30	Electroanalysis of Neutral Precursors in Protic Ionic Liquids and Synthesis of High-Ionicity Ionic Liquids. Langmuir, 2017, 33, 8436-8446.	3.5	24
31	Closed Bipolar Electrodes for Spatial Separation of H ₂ and O ₂ Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 23654-23661.	8.0	53
32	Conducting Polymer Nanocomposite-Based Supercapacitors. Springer Series on Polymer and Composite Materials, 2017, , 269-304.	0.7	2
33	Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2016, 4, 14586-14594.	10.3	44
34	Extremely Stable Platinumâ€Amorphous Carbon Electrocatalyst within Hollow Graphitized Carbon Nanofibers for the Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 9103-9108.	21.0	58
35	Electrocatalysis: Extremely Stable Platinumâ€Amorphous Carbon Electrocatalyst within Hollow Graphitized Carbon Nanofibers for the Oxygen Reduction Reaction (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9231-9231.	21.0	1
36	Electrolyte Jet Machining of Titanium Alloys Using Novel Electrolyte Solutions. Procedia CIRP, 2016, 42, 367-372.	1.9	50

#	Article	IF	CITATIONS
37	Hydrogen Electrooxidation under Conditions of High Mass Transport in Room-Temperature Ionic Liquids and the Role of Underpotential-Deposited Hydrogen. Journal of Physical Chemistry C, 2016, 120, 11498-11507.	3.1	5
38	Biomass-derived activated carbon with simultaneously enhanced CO ₂ uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A, 2016, 4, 280-289.	10.3	251
39	Developing energy efficient lignin biomass processing – towards understanding mediator behaviour in ionic liquids. Faraday Discussions, 2016, 190, 127-145.	3.2	13
40	Room temperature ionic liquid electrolytes for redox flow batteries. Electrochemistry Communications, 2015, 54, 55-59.	4.7	49
41	Electrocatalysis in Room Temperature Ionic Liquids. , 2015, , 483-506.		3
42	Synergistic Catalyst–Support Interactions in a Graphene–Mn ₃ O ₄ Electrocatalyst for Vanadium Redox Flow Batteries. ACS Catalysis, 2015, 5, 7122-7130.	11.2	112
43	Ultramicroelectrode Voltammetry and Scanning Electrochemical Microscopy in Room Temperature Ionic Liquids., 2015,, 113-141.		1
44	Polyaniline- and poly(ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 3307-3315.	2.5	29
45	The Formation and Role of Oxide Layers on Pt during Hydrazine Oxidation in Protic Ionic Liquids. ChemElectroChem, 2014, 1, 281-288.	3.4	16
46	Green One-Step Synthesis of Catalytically Active Palladium Nanoparticles Supported on Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2014, 2, 1241-1250.	6.7	115
47	Formal synthesis of kingianin A based upon a novel electrochemically-induced radical cation Diels–Alder reaction. Chemical Communications, 2014, 50, 12523-12525.	4.1	30
48	The Role of Adsorbed Ions during Electrocatalysis in Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 7414-7422.	3.1	40
49	Kinetics and mechanism of oxygen reduction in a protic ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7548.	2.8	43
50	High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors. RSC Advances, 2013, 3, 9158.	3.6	48
51	Electrocatalytic oxidation of methanol and carbon monoxide at platinum in protic ionic liquids. Electrochemistry Communications, 2012, 23, 122-124.	4.7	26
52	Cellulose Nanowhiskers in Electrochemical Applications. ACS Symposium Series, 2012, , 75-106.	0.5	11
53	Tip generation–substrate collection–tip collection mode scanning electrochemical microscopy of oxygen reduction electrocatalysts. Journal of Electroanalytical Chemistry, 2012, 682, 45-52.	3.8	24
54	Hydrogen Oxidation and Oxygen Reduction at Platinum in Protic Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 18048-18056.	3.1	49

#	Article	IF	Citations
55	Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material. Journal of Materials Chemistry, 2011, 21, 7555.	6.7	13
56	Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent. Green Chemistry, 2011, 13, 1686.	9.0	87
57	On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study. Physical Chemistry Chemical Physics, 2011, 13, 10155.	2.8	41
58	lodide/triiodide electrochemistry in ionic liquids: Effect of viscosity on mass transport, voltammetry and scanning electrochemical microscopy. Electrochimica Acta, 2011, 56, 10313-10320.	5.2	47
59	Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite films. Journal of Solid State Electrochemistry, 2011, 15, 2675-2681.	2.5	24
60	Scanning electrochemical microscopy at thermal sprayed anti-corrosion coatings: Effect of thermal spraying on heterogeneous electron transfer kinetics. Journal of Electroanalytical Chemistry, 2011, 657, 46-53.	3.8	11
61	Palladium–vanadium alloy electrocatalysts for oxygen reduction: Effect of heat treatment on electrocatalytic activity and stability. Applied Catalysis B: Environmental, 2010, 98, 49-56.	20.2	32
62	Highly stable platinum electrocatalysts for oxygen reduction formed using supercritical fluid impregnation. Journal of Power Sources, 2010, 195, 2557-2563.	7.8	15
63	Facile cation electro-insertion into layer-by-layer assembled iron phytate films. Electrochemistry Communications, 2010, 12, 1722-1726.	4.7	8
64	Formation and Growth of Oxide Layers at Platinum and Gold Nano- and Microelectrodes. Analytical Chemistry, 2010, 82, 7135-7140.	6.5	21
65	Nanocomposite oxygen reduction electrocatalysts formed using bioderived reducing agents. Journal of Materials Chemistry, 2010, 20, 1737.	6.7	33
66	Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes. Chemical Society Reviews, 2010, 39, 4185.	38.1	68
67	Electrochemical Capacitance of Nanocomposite Polypyrrole/Cellulose Films. Journal of Physical Chemistry C, 2010, 114, 17926-17933.	3.1	109
68	Effect of Viscosity on Steady-State Voltammetry and Scanning Electrochemical Microscopy in Room Temperature Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 4442-4450.	2.6	51
69	Synthesis of platinum nanoparticles using cellulosic reducing agents. Green Chemistry, 2010, 12, 220-222.	9.0	89
70	Visualisation of the local electrochemical activity of thermal sprayed anti-corrosion coatings using scanning electrochemical microscopy. Electrochimica Acta, 2009, 54, 4647-4654.	5.2	37
71	Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chemistry, 2009, 11, 531.	9.0	100
72	Heterogeneous Electron Transfer Kinetics at the Ionic Liquid/Metal Interface Studied Using Cyclic Voltammetry and Scanning Electrochemical Microscopy. Journal of Physical Chemistry B, 2008, 112, 13292-13299.	2.6	57

#	Article	IF	Citations
73	Carbon Nanofiber Electrodes and Controlled Nanogaps for Scanning Electrochemical Microscopy Experiments. Analytical Chemistry, 2006, 78, 6959-6966.	6.5	22
74	Rapid Screening of Bimetallic Electrocatalysts for Oxygen Reduction in Acidic Media by Scanning Electrochemical Microscopy. Journal of the Electrochemical Society, 2006, 153, E99.	2.9	58
75	Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning Electrochemical Microscopy. Mâ^'Co (M:Â Pd, Ag, Au). Journal of the American Chemical Society, 2005, 127, 357-365.	13.7	587
76	Scanning Electrochemical Microscopy. 55. Fabrication and Characterization of Micropipet Probes. Analytical Chemistry, 2005, 77, 5182-5188.	6.5	47
77	Impact of ion solvation on charge transport through [Os(bpy)2 (H2tzt) Cl]+ in the solid state. Physical Chemistry Chemical Physics, 2004, 6, 3551.	2.8	5
78	Modulating the Redox Properties of an Osmium-Containing Metallopolymer through the Supporting Electrolyte and Cross-Linking. Langmuir, 2004, 20, 862-868.	3.5	60
79	Comparison of electrochemical, electrophoretic and spectrophotometric methods for creatinine determination in biological fluids. Analytica Chimica Acta, 2002, 459, 187-198.	5.4	47
80	Redox switching in solid deposits:. Journal of Electroanalytical Chemistry, 2002, 538-539, 75-85.	3.8	7
81	Charge Carriers for Next-Generation Redox Flow Batteries. , 0, , .		0