Scott S Terhune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8947430/publications.pdf

Version: 2024-02-01

40 papers

1,095 citations

623734 14 h-index 32 g-index

43 all docs 43 docs citations

43 times ranked 1272 citing authors

#	Article	IF	CITATIONS
1	Method to Study Adaptive NK Cells Following MCMV Infections. Methods in Molecular Biology, 2022, 2463, 195-204.	0.9	O
2	Human cytomegalovirus lytic infection inhibits replication-dependent histone synthesis and requires stem loop binding protein function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122174119.	7.1	3
3	Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. IScience, 2022, 25, 104098.	4.1	12
4	Mathematical Modeling of Protracted HCMV Replication using Genome Substrates and Protein Temporal Profiles. FASEB Journal, 2022, 36, .	0.5	1
5	Nitric Oxide Attenuates Human Cytomegalovirus Infection yet Disrupts Neural Cell Differentiation and Tissue Organization. Journal of Virology, 2022, 96, .	3.4	9
6	Implications of a â€~Third Signal' in NK Cells. Cells, 2021, 10, 1955.	4.1	3
7	MyD88 is an essential regulator of NK cell-mediated clearance of MCMV infection. Molecular Immunology, 2021, 137, 94-104.	2.2	4
8	Crosstalk between Plk1, p53, cell cycle, and G2/M DNA damage checkpoint regulation in cancer: computational modeling and analysis. Npj Systems Biology and Applications, 2021, 7, 46.	3.0	26
9	Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers, 2020, 12, 3412.	3.7	3
10	Network mechanisms and dysfunction within an integrated computational model of progression through mitosis in the human cell cycle. PLoS Computational Biology, 2020, 16, e1007733.	3.2	7
11	Nitric Oxide Circumvents Virus-Mediated Metabolic Regulation during Human Cytomegalovirus Infection. MBio, 2020, $11,\ldots$	4.1	14
12	Title is missing!. , 2020, 16, e1007733.		O
13	Title is missing!. , 2020, 16, e1007733.		0
14	Title is missing!. , 2020, 16, e1007733.		0
15	Title is missing!. , 2020, 16, e1007733.		O
16	Title is missing!. , 2020, 16, e1007733.		0
17	Title is missing!. , 2020, 16, e1007733.		0
18	Human Cytomegalovirus Disruption of Calcium Signaling in Neural Progenitor Cells and Organoids. Journal of Virology, 2019, 93, .	3.4	45

#	Article	IF	CITATIONS
19	Impact of RNA polymerase I inhibitor CX-5461 on viral kinase-dependent and -independent cytomegalovirus replication. Antiviral Research, 2018, 153, 33-38.	4.1	15
20	Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. MBio, 2018, 9, .	4.1	36
21	Association of Mycobacterium Proteins with Lipid Droplets. Journal of Bacteriology, 2018, 200, .	2.2	17
22	Human Cytomegalovirus UL135 Interacts with Host Adaptor Proteins To Regulate Epidermal Growth Factor Receptor and Reactivation from Latency. Journal of Virology, 2018, 92, .	3.4	35
23	Proteomic Screen for Cellular Targets of the Vaccinia Virus F10 Protein Kinase Reveals that Phosphorylation of mDia Regulates Stress Fiber Formation. Molecular and Cellular Proteomics, 2017, 16, S124-S143.	3.8	8
24	Cytomegalovirus Late Protein pUL31 Alters Pre-rRNA Expression and Nuclear Organization during Infection. Journal of Virology, 2017, 91, .	3.4	12
25	Opposing Regulation of the EGF Receptor: A Molecular Switch Controlling Cytomegalovirus Latency and Replication. PLoS Pathogens, 2016, 12, e1005655.	4.7	109
26	Impact of a cytomegalovirus kinase inhibitor on infection and neuronal progenitor cell differentiation. Antiviral Research, 2016, 129, 67-73.	4.1	8
27	Targeted analysis of recombinant NF kappa B (RelA/p65) by denaturing and native top down mass spectrometry. Journal of Proteomics, 2016, 134, 76-84.	2.4	10
28	Proteomic identification of nuclear processes manipulated by cytomegalovirus early during infection. Proteomics, 2015, 15, 1995-2005.	2.2	10
29	Antagonistic Relationship between Human Cytomegalovirus pUL27 and pUL97 Activities during Infection. Journal of Virology, 2015, 89, 10230-10246.	3.4	14
30	Inhibition of cellular STAT3 synergizes with the cytomegalovirus kinase inhibitor maribavir to disrupt infection. Antiviral Research, 2013, 100, 321-327.	4.1	10
31	Human Cytomegalovirus pUL29/28 and pUL38 Repression of p53-Regulated p21CIP1 and Caspase 1 Promoters during Infection. Journal of Virology, 2013, 87, 2463-2474.	3.4	25
32	Human Cytomegalovirus pUL97 Regulates the Viral Major Immediate Early Promoter by Phosphorylation-Mediated Disruption of Histone Deacetylase 1 Binding. Journal of Virology, 2013, 87, 7393-7408.	3.4	31
33	Human Cytomegalovirus IE1 Protein Disrupts Interleukin-6 Signaling by Sequestering STAT3 in the Nucleus. Journal of Virology, 2013, 87, 10763-10776.	3.4	58
34	A Method for Quantifying Mechanical Properties of Tissue following Viral Infection. PLoS ONE, 2012, 7, e42197.	2.5	5
35	Antiviral Inhibition Targeting the HCMV Kinase pUL97 Requires pUL27-Dependent Degradation of Tip60 Acetyltransferase and Cell-Cycle Arrest. Cell Host and Microbe, 2011, 9, 103-114.	11.0	65
36	Human Cytomegalovirus pUL83 Stimulates Activity of the Viral Immediate-Early Promoter through Its Interaction with the Cellular IFI16 Protein. Journal of Virology, 2010, 84, 7803-7814.	3.4	143

SCOTT S TERHUNE

#	Article	IF	CITATION
37	Human Cytomegalovirus UL29/28 Protein Interacts with Components of the NuRD Complex Which Promote Accumulation of Immediate-Early RNA. PLoS Pathogens, 2010, 6, e1000965.	4.7	65
38	Human Cytomegalovirus UL28 and UL29 Open Reading Frames Encode a Spliced mRNA and Stimulate Accumulation of Immediate-Early RNAs. Journal of Virology, 2009, 83, 10187-10197.	3.4	35
39	Human Cytomegalovirus Protein UL38 Inhibits Host Cell Stress Responses by Antagonizing the Tuberous Sclerosis Protein Complex. Cell Host and Microbe, 2008, 3, 253-262.	11.0	175
40	RNAs Are Packaged into Human Cytomegalovirus Virions in Proportion to Their Intracellular Concentration. Journal of Virology, 2004, 78, 10390-10398.	3.4	82