Jonathan F Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8947091/publications.pdf

Version: 2024-02-01

516710 361022 1,284 48 16 35 citations h-index g-index papers 49 49 49 943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Control of Cellular Separation Using Adaptive Surface Structures. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 73-80.	0.3	O
2	Intermediate scaling and logarithmic invariance in turbulent pipe flow. Journal of Fluid Mechanics, 2021, 913, .	3.4	3
3	Simulation of the turbulent axisymmetric bluff body wake with pulsed jet forcing. Physical Review Fluids, 2021, 6, .	2.5	5
4	Control of cellular separation using adaptive surfaces. Journal of Fluids and Structures, 2019, 91, 102609.	3.4	3
5	Compliant kagome lattice structures for generating in-plane waveforms. International Journal of Solids and Structures, 2018, 141-142, 86-101.	2.7	7
6	Modelling and feedback control of vortex shedding for drag reduction of a turbulent bluff body wake. International Journal of Heat and Fluid Flow, 2018, 71, 127-136.	2.4	9
7	Experimental Control of Turbulent Boundary Layers with In-plane Travelling Waves. Flow, Turbulence and Combustion, 2018, 100, 1015-1035.	2.6	28
8	Real-time feedback control of three-dimensional Tollmien-Schlichting waves using a dual-slot actuator geometry. Physical Review Fluids, 2018, 3, .	2.5	3
9	Weakly nonlinear modelling of a forced turbulent axisymmetric wake. Journal of Fluid Mechanics, 2017, 814, 570-591.	3.4	15
10	Spectral structure and linear mechanisms in a rapidly distorted boundary layer. International Journal of Heat and Fluid Flow, 2017, 67, 63-73.	2.4	7
11	Optimal aero-structural design of an adaptive surface for boundary layer motivation using an auxetic lattice skin. Journal of Intelligent Material Systems and Structures, 2017, 28, 2414-2427.	2.5	2
12	Fictitious domain for stabilization of fluid-structure interaction. IFAC-PapersOnLine, 2017, 50, 12301-12306.	0.9	3
13	The determination and enhancement of compliant modes for actuation in structural assemblies. International Journal of Solids and Structures, 2017, 106-107, 264-273.	2.7	3
14	Passive control of base pressure on an axisymmetric blunt body using a perimetric slit. Physical Review Fluids, 2017, 2, .	2.5	15
15	Stochastic modelling and feedback control of bistability in a turbulent bluff body wake. Journal of Fluid Mechanics, 2016, 802, 726-749.	3.4	79
16	Introduction to Topical Issue on Extreme Flows. Experiments in Fluids, 2016, 57, 1.	2.4	1
17	Extremum seeking to control the amplitude and frequency of a pulsed jet for bluff body drag reduction. Experiments in Fluids, 2016, 57, 1.	2.4	12
18	The Interaction of a Swept-Wing Boundary Layer with Surface Excrescences. , 2016, , .		18

#	Article	IF	Citations
19	Adaptive Kagome Lattices for Near Wall Turbulence Suppression. , 2015, , .		1
20	Adaptive Vortex Generator Structures for the Reduction of Turbulent Separation. , 2015, , .		2
21	High-frequency forcing of a turbulent axisymmetric wake. Journal of Fluid Mechanics, 2015, 770, 305-318.	3.4	33
22	Stability and Coherent Structures in the Wake of Axisymmetric Bluff Bodies. Fluid Mechanics and Its Applications, 2015, , 143-148.	0.2	1
23	Open-Loop Control of a Turbulent Axisymmetric Wake. Fluid Mechanics and Its Applications, 2015, , 137-142.	0.2	0
24	Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Experiments in Fluids, $2013, 54, 1$.	2.4	29
25	An innovative low-profile monolithic constant-temperature anemometer. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 100, 38-45.	3.9	4
26	Scaling of Turbulence Structures inÂVery-Rough-Wall Channel Flow. ERCOFTAC Series, 2011, , 405-412.	0.1	0
27	Similarity of the streamwise velocity component in very-rough-wall channel flow. Journal of Fluid Mechanics, 2011, 668, 174-201.	3.4	18
28	Flow Estimation of Boundary Layers Using Wall Shear Information. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 13813-13818.	0.4	0
29	A numerical model for electro-active polymer actuators with experimental validation. Sensors and Actuators A: Physical, 2011, 170, 121-130.	4.1	7
30	Flow estimation of boundary layers using DNS-based wall shear information. International Journal of Control, 2011, 84, 1310-1325.	1.9	12
31	Transient growth instability cancelation by a plasma actuator array. Experiments in Fluids, 2010, 49, 1339-1348.	2.4	67
32	Electro-active polymer (EAP) "dimple―actuators for flow control: Design and characterisation Sensors and Actuators A: Physical, 2010, 157, 210-218.	4.1	19
33	Control of transient growth induced boundary layer transition using plasma actuators. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 183-188.	0.2	3
34	Large Roughness Effects in Channel Flow. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 167-173.	0.2	0
35	A modeling and filtering framework for the semi-discretised Navier-Stokes equations. , 2009, , .		4
36	Low-Order Flow-Field Estimation Using Surface-Shear-Stress Information in a Transitional Boundary Layer., 2008,,.		0

#	Article	lF	CITATIONS
37	The interaction between inner and outer regions of turbulent wall-bounded flow. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 683-698.	3.4	54
38	Flow control with active dimples. Aeronautical Journal, 2007, 111, 705-714.	1.6	24
39	Stabilising Control Laws for the Incompressible Navier-Stokes Equations Using Sector Stability Theory. , 2006, , .		8
40	Analysis of the energy budget in turbulent channel flow using orthogonal wavelets. Computers and Fluids, 2005, 34, 199-224.	2.5	19
41	Analysis of a stochastic backscatter model for the large-eddy simulation of wall-bounded flow. European Journal of Mechanics, B/Fluids, 2004, 23, 737-758.	2.5	8
42	Scaling of the streamwise velocity component in turbulent pipe flow. Journal of Fluid Mechanics, 2004, 508, 99-131.	3.4	190
43	Further observations on the mean velocity distribution in fully developed pipe flow. Journal of Fluid Mechanics, 2004, 501, 135-147.	3.4	257
44	Anisotropy and energy flux in wall turbulence. Journal of Fluid Mechanics, 2003, 491, 353-378.	3.4	33
45	Pitot probe corrections in fully developed turbulent pipe flow. Measurement Science and Technology, 2003, 14, 1449-1458.	2.6	53
46	Eddy structure in turbulent boundary layers. European Journal of Mechanics, B/Fluids, 2000, 19, 673-694.	2.5	196
47	Passive control of backstep flow. Experimental Thermal and Fluid Science, 1998, 16, 122-132.	2.7	23
48	Adaptive Base-Flaps Under Variable Cross-Wind. , 0, , .		6