Gavin Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8947081/publications.pdf

Version: 2024-02-01

17440 18130 15,266 141 63 120 citations h-index g-index papers 177 177 177 12133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	No ion is an island: Multiple ions influence boron incorporation into CaCO3. Geochimica Et Cosmochimica Acta, 2022, 318, 510-530.	3.9	11
2	New Calcium Carbonate Nanoâ€particulate Pressed Powder Pellet (NFHSâ€⊋â€NP) for LAâ€ICPâ€OES, LAâ€(MC and µXRF. Geostandards and Geoanalytical Research, 2022, 46, 411-432.)â€ICPâ€N	MS ₆
3	Abrupt upwelling and CO2 outgassing episodes in the north-eastern Arabian Sea since mid-Holocene. Scientific Reports, 2022, 12, 3830.	3.3	2
4	Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum. Science Advances, 2022, 8, eabg1025.	10.3	13
5	Glacial-aged development of the Tunisian Coral Mound Province controlled by glacio-eustatic oscillations and changes in surface productivity. Marine Geology, 2022, 446, 106772.	2.1	7
6	Impact of nitrogen (N) and phosphorus (P) enrichment and skewed N:P stoichiometry on the skeletal formation and microstructure of symbiotic reef corals. Coral Reefs, 2022, 41, 1147-1159.	2.2	10
7	Laurentide Ice Sheet extent over the last 130 thousand years traced by the Pb isotope signature of weathering inputs to the Labrador Sea. Quaternary Science Reviews, 2022, 287, 107564.	3.0	5
8	Subâ€Permil Interlaboratory Consistency for Solutionâ€Based Boron Isotope Analyses on Marine Carbonates. Geostandards and Geoanalytical Research, 2021, 45, 59-75.	3.1	31
9	NIST RM 8301 Boron Isotopes in Marine Carbonate (Simulated Coral and Foraminifera Solutions): Interâ€laboratory δ ¹¹ B and Trace Element Ratio Value Assignment. Geostandards and Geoanalytical Research, 2021, 45, 77-96.	3.1	24
10	DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 2021, 17, 203-227.	3.4	71
11	Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea. Scientific Reports, 2021, 11, 472.	3.3	14
12	Glacio-eustatic variations and sapropel events as main controls on the Middle Pleistocene-Holocene evolution of the Cabliers Coral Mound Province (W Mediterranean). Quaternary Science Reviews, 2021, 253, 106783.	3.0	12
13	Atmospheric CO ₂ over the Past 66 Million Years from Marine Archives. Annual Review of Earth and Planetary Sciences, 2021, 49, 609-641.	11.0	156
14	Porites Calcifying Fluid pH on Seasonal to Diurnal Scales. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016889.	2.6	5
15	Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years. Science Advances, 2021, 7, .	10.3	29
16	Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nature Geoscience, 2021, 14, 690-696.	12.9	40
17	Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate. Journal of the Geological Society, 2021, 178, .	2.1	12
18	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RG000678.	23.0	498

#	Article	IF	Citations
19	The Flux and Provenance of Dust Delivered to the SW Pacific During the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003869.	2.9	5
20	On climate and abyssal circulation in the Atlantic Ocean during late Pliocene marine isotope stage M2, $\hat{a}^{1}/43.3$ million years ago. Quaternary Science Reviews, 2020, 250, 106644.	3.0	3
21	Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nature Communications, 2020, 11, 4436.	12.8	57
22	Past climates inform our future. Science, 2020, 370, .	12.6	253
23	Revisiting the Middle Eocene Climatic Optimum "Carbon Cycle Conundrum―With New Estimates of Atmospheric pCO ₂ From Boron Isotopes. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003713.	2.9	45
24	The pH dependency of the boron isotopic composition of diatom opal (<i>Thalassiosira) Tj ETQq(</i>	0	/Oyerlock 10
25	Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Scientific Reports, 2020, 10, 11002.	3.3	71
26	Ocean Carbon Storage across the middle Miocene: a new interpretation for the Monterey Event. Nature Communications, 2020, 11, 134.	12.8	59
27	Automation of boron chromatographic purification for \hat{l}' sup>11B analysis of coral aragonite. Rapid Communications in Mass Spectrometry, 2020, 34, e8762.	1.5	5
28	Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 2020, 16, 1953-1968.	3.4	71
29	Climate Sensitivity on Geological Timescales Controlled by Nonlinear Feedbacks and Ocean Circulation. Geophysical Research Letters, 2019, 46, 9880-9889.	4.0	90
30	The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 2019, 12, 3149-3206.	3.6	131
31	Orbital Forcing, Ice Volume, and CO ₂ Across the Oligoceneâ€Miocene Transition. Paleoceanography and Paleoclimatology, 2019, 34, 316-328.	2.9	38
32	Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Scientific Reports, 2019, 9, 7497.	3.3	157
33	Insensitivity of alkenone carbon isotopes to atmospheric CO ₂ at low to moderate CO ₂ levels. Climate of the Past, 2019, 15, 539-554.	3.4	40
34	More efficient North Atlantic carbon pump during the Last Glacial Maximum. Nature Communications, 2019, 10, 2170.	12.8	22
35	The effect of matrix interferences on <i>in situ</i> boron isotope analysis by laser ablation multiâ€collector inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 959-968.	1.5	19
36	City Scale Particulate Matter Monitoring Using LoRaWAN Based Air Quality IoT Devices. Sensors, 2019, 19, 209.	3.8	82

#	Article	IF	Citations
37	Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean. Nature Geoscience, 2018, 11, 340-344.	12.9	73
38	Historical Trends in pH and Carbonate Biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophysical Research Letters, 2018, 45, 3228-3237.	4.0	18
39	Ocean acidification affects coral growth by reducing skeletal density. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1754-1759.	7.1	156
40	Pathways to 1.5 ${\hat {\sf A}}^{\sf o}{\sf C}$ and 2 ${\hat {\sf A}}^{\sf o}{\sf C}$ warming based on observational and geological constraints. Nature Geoscience, 2018, 11, 102-107.	12.9	84
41	Comparing Climate Sensitivity, Past and Present. Annual Review of Marine Science, 2018, 10, 261-288.	11.6	28
42	Boron Isotopes in the Earth and Planetary Sciencesâ€"A Short History and Introduction. Advances in Isotope Geochemistry, 2018, , 1-11.	1.4	11
43	Boron Isotope Analysis of Geological Materials. Advances in Isotope Geochemistry, 2018, , 13-31.	1.4	14
44	Factors influencing test porosity in planktonic foraminifera. Biogeosciences, 2018, 15, 6607-6619.	3.3	17
45	Robust Constraints on Past CO ₂ Climate Forcing From the Boron Isotope Proxy. Paleoceanography and Paleoclimatology, 2018, 33, 1099-1115.	2.9	11
46	Placing our current †hyperthermal' in the context of rapid climate change in our geological past. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170086.	3.4	44
47	Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth and Planetary Science Letters, 2018, 498, 362-376.	4.4	119
48	No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record. Nature Communications, 2018, 9, 2875.	12.8	8
49	Boron Stable Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 162-166.	0.1	2
50	Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 2017, 8, 14845.	12.8	473
51	Differences between the last two glacial maxima and implications for ice-sheet, $\hat{l}'180$, and sea-level reconstructions. Quaternary Science Reviews, 2017, 176, 1-28.	3.0	82
52	Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochimica Et Cosmochimica Acta, 2017, 217, 240-253.	3.9	29
53	Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature, 2017, 548, 573-577.	27.8	277
54	Causes of ice age intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13114-13119.	7.1	166

#	Article	IF	CITATIONS
55	A record of Neogene seawater <i>l´</i> ¹¹ B reconstructed from paired <i>l´</i> ¹¹ B analyses on benthic and planktic foraminifera. Climate of the Past, 2017, 13, 149-170.	3.4	43
56	The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 2017, 10, 889-901.	3.6	90
57	Size-dependent response of foraminiferal calcification to seawater carbonate chemistry. Biogeosciences, 2017, 14, 3287-3308.	3.3	34
58	Palaeogeographic controls on climate and proxy interpretation. Climate of the Past, 2016, 12, 1181-1198.	3.4	121
59	Coral Srâ€U thermometry. Paleoceanography, 2016, 31, 626-638.	3.0	41
60	An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chemical Geology, 2016, 447, 148-160.	3. 3	32
61	Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacialÂintensification. Nature Geoscience, 2016, 9, 375-379.	12.9	50
62	Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 2016, 533, 380-384.	27.8	327
63	Reconstructing Ocean pH with Boron Isotopes in Foraminifera. Annual Review of Earth and Planetary Sciences, 2016, 44, 207-237.	11.0	122
64	A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for †vital effects'. Earth and Planetary Science Letters, 2016, 454, 282-292.	4.4	57
65	Geochemical response of the mid-depth Northeast Atlantic Ocean to freshwater input during Heinrich events 1 to 4. Quaternary Science Reviews, 2016, 151, 236-254.	3.0	16
66	Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reefâ€building coral <i>Siderastrea siderea</i> . Paleoceanography, 2016, 31, 1315-1329.	3.0	34
67	Lessons on Climate Sensitivity From Past Climate Changes. Current Climate Change Reports, 2016, 2, 148-158.	8.6	42
68	Deepâ€sea coral <i>δ</i> ¹³ C: A tool to reconstruct the difference between seawater pH and <i>δ</i> ¹¹ Bâ€derived calcifying fluid pH. Geophysical Research Letters, 2016, 43, 299-308.	4.0	14
69	Tracking the provenance of Greenland-sourced, Holocene aged, individual sand-sized ice-rafted debris using the Pb-isotope compositions of feldspars and 40 Ar/ 39 Ar ages of hornblendes. Earth and Planetary Science Letters, 2016, 433, 192-203.	4.4	30
70	Boron Stable Isotopes. Encyclopedia of Earth Sciences Series, 2016, , 1-6.	0.1	5
71	Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography, 2015, 30, 1000-1020.	3.0	129
72	Reply to 'Pliocene warmth and gradients'. Nature Geoscience, 2015, 8, 420-420.	12.9	3

#	Article	IF	CITATIONS
73	Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography, 2015, 30, 1437-1454.	3.0	96
74	Boron during meteoric diagenesis and its potential implications for Marinoan snowball Earth $\hat{l}'11B$ -pH excursions. Geology, 2015, 43, 627-630.	4.4	20
75	Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature, 2015, 518, 219-222.	27.8	155
76	Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature, 2015, 518, 49-54.	27.8	287
77	Tracing the strength of the southwest monsoon using boron isotopes in the eastern Arabian Sea. Geophysical Research Letters, 2015, 42, 1450-1458.	4.0	19
78	Assessing the impact of diagenesis on $\hat{1}$ 11B, $\hat{1}$ 13C, $\hat{1}$ 18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochimica Et Cosmochimica Acta, 2015, 166, 189-209.	3.9	88
79	Evaluating the utility of <scp>B</scp> / <scp>C</scp> a ratios in planktic foraminifera as a proxy for the carbonate system: A case study of <i><scp>G</scp>lobigerinoides ruber</i> . Geochemistry, Geophysics, Geosystems, 2015, 16, 1052-1069.	2.5	50
80	Response to "Comment on †The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site', by David Lang etÂal.― Quaternary Science Reviews, 2014, 103, 179-183.	3.0	0
81	Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum. Geology, 2014, 42, 739-742.	4.4	62
82	Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 2014, 508, 477-482.	27.8	487
83	Middle Miocene climate instability associated with highâ€amplitude CO ₂ variability. Paleoceanography, 2014, 29, 845-853.	3.0	110
84	High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geoscience, 2014, 7, 606-611.	12.9	105
85	Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study. Earth and Planetary Science Letters, 2014, 403, 254-262.	4.4	55
86	Deep water formation in the North Pacific and deglacial CO ₂ rise. Paleoceanography, 2014, 29, 645-667.	3.0	99
87	The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site. Quaternary Science Reviews, 2014, 93, 125-141.	3.0	45
88	An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quaternary Science Reviews, 2013, 75, 181-194.	3.0	119
89	A Pb isotope tracer of ocean-ice sheet interaction: the record from the NE Atlantic during the Last Glacial/Interglacial cycle. Quaternary Science Reviews, 2013, 82, 133-144.	3.0	12
90	Structural limitations in deriving accurate U-series ages from calcitic cold-water corals contrast with robust coral radiocarbon and Mg/Ca systematics. Chemical Geology, 2013, 355, 69-87.	3.3	11

#	Article	IF	Citations
91	Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chemical Geology, 2013, 358, 1-14.	3.3	112
92	Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth and Planetary Science Letters, 2013, 364, 111-122.	4.4	149
93	Warm climates of the past—a lesson for the future?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130146.	3.4	30
94	Warm ocean processes and carbon cycling in the Eocene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130099.	3.4	58
95	Relationship between sea level and climate forcing by CO ₂ on geological timescales. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1209-1214.	7.1	117
96	CO ₂ drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography, 2013, 28, 42-53.	3.0	92
97	A geological perspective on potential future sea-level rise. Scientific Reports, 2013, 3, 3461.	3.3	41
98	Continental weathering fluxes during the last glacial/interglacial cycle: insights from the marine sedimentary Pb isotope record at Orphan Knoll, NW Atlantic. Quaternary Science Reviews, 2012, 38, 89-99.	3.0	30
99	Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum. Earth and Planetary Science Letters, 2012, 341-344, 222-233.	4.4	49
100	The evolution of pCO2, ice volume and climate during the middle Miocene. Earth and Planetary Science Letters, 2012, 341-344, 243-254.	4.4	239
101	A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 2012, 488, 609-614.	27.8	342
102	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	27.8	247
103	The Geological Record of Ocean Acidification. Science, 2012, 335, 1058-1063.	12.6	828
104	Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system. Earth and Planetary Science Letters, 2011, 302, 403-413.	4.4	252
105	Persistent Nordic deep-water overflow to the glacial North Atlantic. Geology, 2011, 39, 515-518.	4.4	41
106	Constraints to the timing of India–Eurasia collision; a re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus–Tsangpo Suture Zone, Ladakh, India. Earth-Science Reviews, 2011, 106, 265-292.	9.1	72
107	Mountain uplift and the glaciation of North America – a sensitivity study. Climate of the Past, 2010, 6, 707-717.	3.4	30
108	Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	332

#	Article	IF	Citations
109	Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochimica Et Cosmochimica Acta, 2010, 74, 4988-5001.	3.9	191
110	Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters, 2010, 292, 201-211.	4.4	416
111	An evaluation of benthic foraminiferal B/Ca and \hat{l} 11B for deep ocean carbonate ion and pH reconstructions. Earth and Planetary Science Letters, 2010, 293, 114-120.	4.4	88
112	Testing the application of in situ Sm–Nd isotopic analysis on detrital apatites: A provenance tool for constraining the timing of India–Eurasia collision. Earth and Planetary Science Letters, 2010, 297, 42-49.	4.4	29
113	The accuracy of δ11B measurements of foraminifers. Chemical Geology, 2010, 274, 187-195.	3.3	25
114	Improving constraints on apatite provenance: Nd measurement on fission-track-dated grains. Geological Society Special Publication, 2009, 324, 57-72.	1.3	8
115	Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature, 2009, 458, 493-496.	27.8	218
116	Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature, 2009, 461, 1110-1113.	27.8	365
117	Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chemical Geology, 2009, 261, 244-260.	3.3	164
118	In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH. Chemical Geology, 2009, 260, 138-147.	3.3	85
119	How well do non-traditional stable isotope results compare between different laboratories: results from the interlaboratory comparison of boron isotope measurements. Journal of Analytical Atomic Spectrometry, 2009, 24, 825.	3.0	42
120	The Arctic cryosphere in the Mid-Pliocene and the future. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 49-67.	3.4	42
121	Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 2008, 454, 1102-1105.	27.8	243
122	Seawater pH, pCO2 and [CO2â^3] variations in the Caribbean Sea over the last 130Âkyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters, 2008, 271, 254-266.	4.4	331
123	Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 2007, 315, 980-983.	12.6	1,154
124	No change in the neodymium isotope composition of deep water exported from the North Atlantic on glacial-interglacial time scales. Geology, 2007, 35, 37.	4.4	55
125	Insights into the patterns and locations of erosion in the Himalaya — A combined fission-track and in situ Sm–Nd isotopic study of detrital apatite. Earth and Planetary Science Letters, 2007, 257, 407-418.	4.4	60
126	A core top assessment of proxies for the ocean carbonate system in surfaceâ€dwelling foraminifers. Paleoceanography, 2007, 22, .	3.0	93

#	Article	IF	Citations
127	In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 288.	3.0	115
128	Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS. Chemical Geology, 2006, 230, 161-174.	3.3	64
129	Negligible glacial–interglacial variation in continental chemical weathering rates. Nature, 2006, 444, 918-921.	27.8	125
130	U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS. Contributions To Mineralogy and Petrology, 2004, 147, 549-564.	3.1	61
131	The generation of prograde P–T–t points and paths; a textural, compositional, and chronological study of metamorphic monazite. Earth and Planetary Science Letters, 2004, 228, 125-142.	4.4	140
132	Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth and Planetary Science Letters, 2004, 220, 157-174.	4.4	139
133	Metamorphic monazite and the generation of P-T-t paths. Geological Society Special Publication, 2003, 220, 25-47.	1.3	35
134	Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2003, 18, 837-846.	3.0	346
135	Isotope studies reveal a complete Himalayan section in the Nanga Parbat syntaxis. Geology, 2003, 31, 1109.	4.4	45
136	Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chemical Geology, 2002, 191, 183-207.	3.3	222
137	The Tertiary collision-related thermal history of the NW Himalaya. Journal of Metamorphic Geology, 2002, 20, 827-843.	3.4	32
138	The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth and Planetary Science Letters, 2000, 181, 327-340.	4.4	294
139	New garnets for old? Cautionary tales from young mountain belts. Earth and Planetary Science Letters, 1999, 172, 301-309.	4.4	95
140	Lithostratigraphic correlations in the western Himalayaâ€"An isotopic approach. Geology, 1999, 27, 585.	4.4	93
141	THE APPLICATION OF THE NITROGEN ISOTOPE N15 FOR THE STUDY OF PROTEIN METABOLISM. Science, 1938, 88, 599-600.	12.6	43